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Motivation. 
 
The Reproductive Number of an epidemic (R0) is the number of secondary cases produced 
by each primary case in a totally susceptible population.  For an epidemic to die out, R0 must 
fall below unity. Large values indicate epidemics that may not be susceptible to 
interventions designed to reduce transmissibility below the unit threshold.  Historical 
demographers are already familiar with these concepts from population dynamics as the 
Reproductive Number is equivalent to the Net Reproduction Rate and the Serial Interval is 
equivalent to generation length. 
 
In the early stages of an epidemic or pandemic, R0 together with the Serial Interval between 
primary and secondary cases, is an important guide to the transmissibility of the disease and 
the possibility for intervention. Models that provide an early and accurate estimation of the 
reproductive number, and its confidence interval, are crucially important for health planners. 
 
Treating Past Pandemics as Real-Time Problems. 
 
In the past 125 years, there have only been 5 genetic shifts in the human influenza A virus 
that have led to pandemics.  Despite this relatively small number, data from the historic 
registration systems for incidence and deaths have provided important insights into influenza 
dynamics. 
 
It is surprising, given its importance for epidemic preparedness, that there are relatively few 
estimates of the Reproductive Number for 1918.  Analyses of this pandemic in the United 
States and North-West Europe produce estimates of around 1.2 to 3.75.  These values are 
surprisingly low when compared with estimates as high as 20 for other influenza epidemics, 
and when compared with other infectious diseases. It suggests that the 1918 disaster was 
caused by very high case fatality rates, rather than by extreme transmissibility, and that 
control might have been feasible with aggressive intervention. 
 
Published reproductive numbers for past epidemics have been estimated ex post to maximise 
knowledge about the process. A complementary ex ante approach to the formulation and 
evaluation of new models designed to exploit real-time data from inter-pandemic periods is 
to treat previous pandemics and epidemics as if they were happening in real-time. This 
necessarily requires daily data. 
 
Ex post analyses can use models that are purely statistical, following the time-series 
tradition, or they can be process models that include specific components for Susceptibility, 
Exposure, Infection and Recovery (SEIR models).  Our ex post analysis of daily data for 



Munich shows that turning points in influenza epidemics can be estimated with confidence 
intervals as narrow as +/- 1 day.  However, for a real-time context it is likely that statistical 
rather than process models will be preferred, as the latter are usually based on knowledge of 
the whole epidemic curve.  
 
The Growth of Real-Time Influenza Data. 
 
Recent expansion in contemporary sources of infectious disease morbidity and mortality 
have widened the perspective necessary when selecting appropriate historic sources. The 
older style of infectious disease incidence data comes from several sources. Sentinel systems 
recruit medical practitioners to report on patient cases. The details typically available for 
influenza monitoring are the day the patient is seen, age, sex, diagnosis of influenza-like 
illness (ILI) or lower respiratory tract infection (LRTI).  The reports are usually made on 
paper forms to form weekly aggregates and sent to a central authority such as the US 
Centers for Disease Control and Prevention.  Paper-based sentinel systems are obviously 
subject to bureaucratic and postal delay, but we can expect that they will be replaced by real-
time, computerized systems.  Longer delays are encountered for laboratory-confirmed cases, 
but recent advances in diagnostic technology have been rapid. 
 
Weekly data make estimates of the growth phase of epidemics appear too short if only the 
weeks with maximum growth are used, and too long if base-to-peak measures are used.  In 
addition, the amplitude and slope from base to peak are underestimated with weekly data. 
Aggregation degrades the precision of the temporal “signal” and reduces variability. 
 
Weekly counts for infectious diseases are a legacy of non-electronic recording, mailing, and 
publishing systems. Models of rapidly spreading epidemics are conceptualised on scales of 
hours and days: e.g. the periods of latency and infection.  It is unsatisfactory to specify 
models at one time scale and then to estimate the parameters and assess model accuracy 
using data at a more aggregated scale. Weekly data may also conceal important sequencing 
changes during the course of an epidemic: e.g. a shift from bronchitis to pneumonia as 
sequelae of influenza, or a shift from child to adult deaths.  
 
Within the last five years there has been increasing interest in real-time “syndromic 
surveillance”, using indirect indicators. The most publicised is “Google flu trends” which 
records on a worldwide scale the number of web searches related to influenza and their 
country of origin. Useful information can also come from telephone triage services, such as 
enquiries to the British National Health Service Helpline.  Many commercial organisations 
in the health industry such as private hospitals and pharmaceutical retailers have 
computerised record-keeping, integrated across multiple locations, which may provide 
information that is more up-to-date than that of the state health providers. 
 
The growth of real-time data on infectious morbidity and mortality suggests that historical 
demographers should try to compile daily data from multiple sources, including reported 
cases and hospital admissions, as well as mortality.  We should also recognise that some of 
these may be indirect indicators of the disease process and subject to mis-reporting.   
 
Data Complications. 
 
In this study we address two complications that are not treated in the established 
methodology. The first is that we recognise that real-time data may show weekly cycles. It is 



clear that daily case incidence is depressed at weekends, and on public holidays such as 
Christmas and New Year - which occur in the peak influenza season for the Northern 
Hemisphere.  Employee sickness records and pharmaceutical sales may have structural 
zeroes if the enterprises do not operate on a Sunday. The possibility that morbidity (and 
sometimes mortality) counts may be depressed at weekends, or that cases could be shifted to 
Friday or Monday, has been ignored in the literature. 
 
The second problem concerns leads and lags in multiple sources. This issue is explicit in 
spatial models, but has rarely been addressed for multiple series within one spatial unit. We 
hypothesise that time-series for employee records and pharmaceutical sales may “lead” 
doctor visits, which in turn may be lagged by hospital entries and ultimately deaths. The 
theory of infectious disease modelling states that R0 is the same for both incidence and 
mortality if they are correctly recorded. In practice, the use of multiple sources with 
different reporting characteristics is likely to have contributed to the variability in the 
estimates of R0 for a given pandemic.  
 
The Model. 
 
Although we have defined R0 from a demographic viewpoint, there are a number of basic 
ways to estimate it, and many variants. Sophisticated deterministic and stochastic models 
with explicit transmission can be useful for simulations, intervention studies, and scenario 
building, but they are probably ruled out in a real-time analysis. We assume that daily 
incidence data are available, but no direct information on laboratory-confirmed cases, 
recovery, contact or transmission. Additionally, as we are concerned with pandemics we 
cannot assume that the disease is in an endemic equilibrium. 
 
Therefore in our study we aim to: 

1) model a mortality series devoid of the misreporting pattern due to weekends and 
public holidays; 

2) compute an instantaneous R0, so that additional data could be employed to amend the 
outcome.  

 
In order to cope with these targets, we assume event counts are indirect observations from a 
latent distribution, i.e. observed counts are not drawn directly from the distribution of real 
interest, but rather from another distribution derived from it.  
 
The unknown latent distribution is the continuous series of events over time. A 
compositional matrix describes how this latent distribution was mixed before generating the 
data, and it is a characterisation of the mis-registration pattern due to week-ends and public 
holidays.  
 
The observed counts, therefore, can be viewed as the outcome of a misreporting process that 
transforms latent series into observed data. For instance, the counts on Friday and Monday 
may be composed of the actual values on these days plus the misclassified cases from the 
neighbouring Saturday and Sunday.  
Both latent distributions and the elements in the compositional matrix are of interest. 
Regarding the latent event series, instead of assuming a specific function for its description, 
we let the data speak by themselves using a smooth curve. Such smooth curves could be 
considered continuous and this allows an estimation of instantaneous R0 as the relative 
derivative of the latent curve with respect to time. The compositional matrix embodies all 



eventual exchanges between week-days via “misreporting proportions” which could also be 
estimated. 
 
The composite link model (CLM) of Thompson and Baker (1981) offers an elegant 
framework to model such a complex structure. Moreover the combination of CLM and 
penalized likelihood has been already used to estimate smooth latent distributions (Eilers, 
2007; Camarda et al., 2008). In this study we employ and modify these methodologies to 
account for our specific data structure. 
 
Estimating the slope during the rising segment of the epidemic in this way has three 
advantages. First, one can ignore the decline in the number of susceptibles caused by death 
and immunity. Second, the slope is independent of the level of under-registration, but only if 
the level remains constant.  Third, the estimate of R0 and its error interval is not a constant 
but can vary as data accumulates.  
 
Test Data. 
 
In this study we test our models on two data sets. The first is for the influenza pandemic of 
1889-90 as experienced in Munich and Bavaria, an event which is one of the few examples 
that combine a pandemic, immunological naivete in the population, and multiple sources.  
We have daily data on reported cases in the city, and series of entries and exits for its two 
major hospitals.  In addition, we have daily sickness records for male employees of a major 
industry in Bavaria, classified by age, location, and type of job. 
 
The second example is for New York State (excluding the city of New York) in 1918. Daily 
deaths from influenza and pneumonia separately are given for spatial units, including the 
cities of Rochester and Buffalo. The additional feature in this case is that distributions of 
reported times from symptoms to death are available. 
 
It is known that the age-specific response in these two pandemics was different and that the 
1889-90 outbreak occurred in an era when influenza had almost disappeared as a cause of 
morbidity and mortality, so that the proportion of the population with a naïve immune 
response to influenza was probably much higher than in 1918. 
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