EUROPEAN POPULATION CONFERENCE 2012 13-16 June Stockholm, Sweden

On the Slope Information of Fertility Measures

P. C. Roger Cheng

National Central University TAIWAN

Outline of the Presentation

- Motivation of the study
- Basic ideas
- Cohort fertility predictors
- Source of estimation bias
- Slope information of fertility measures
- Conclusion / Remarks

Can the Bongaarts-Feeney (1998) adjusted measure help to predict cohort fertility?

Pros of the BF:

- > an **attractively simple** formula
- > ASFRs are **available** for many countries

Cons of the BF:

- the exclusion of past fertility process
- the use of incidence rates for non-repeatable events
- > the **unrealistic** assumption
- the fluctuant feature in its time series
- the obvious discrepancy from the time series of CFR

Key: how the question is perceived.

A Simple Math Identity

$$\begin{aligned} \mathrm{TFR}(T) &= \int_{15}^{44} f(a,T) \ da & f(a,T)/\mathrm{TFR}(T) = p(a,T) \\ \mathrm{Priod} \ \mathrm{frill} \ \mathrm{priod} \ \mathrm{priod} \ \mathrm{priod} \ \mathrm{priod} \ \mathrm{frill} \ \mathrm{priod} \ \mathrm{prio$$

$$CFR(c) = \int_{15}^{44} BF(c+a) \ w(a,c+a) \ da$$

first shown in Bongaarts and Feeney (2006), but not further utilized in developing a CFR predictor.

The many-to-one perspective can waive most (if not all) previous challenges:

- ✓ past fertility process of the target cohort is now incorporated;
- ✓ the aim is to construct a real (rather than synthetic) cohort measure;
- ✓ applicable to any birth order and equivalent to smoothing the time series of BF;
- ✓ **empirical evidence** shows its usefulness.

Cohort fertility predictors

> When data of cohort childbearing is truncated at age A,

Cohort fertility predictors

> When data of cohort childbearing is truncated at age A,

	all-bi	rth-combined	parity-specific				
country	periods	completed cohorts	periods	completed cohorts			
	from th	e Human Fertility	Database				
Austria	1951 - 2010	1936-1966 (31)	1984 - 2010	NA			
Bulgaria	1947 - 2009	1932-1965 (34)	1947 - 2009	1932 - 1965(34)			
Canada	1921 - 2007	1906-1963 (58)	1944 - 2007	1929 - 1963(35)			
Czech Republic	1950 - 2009	1935-1965 (31)	1950 - 2009	1935 - 1965(31)			
Estonia	1959 - 2009	1944-1965 (22)	1959 - 2009	1944 - 1965(22)			
Finland	1939 - 2009	1924–1965 (42)	1982 - 2009	NA			
France	1946 - 2009	1931 - 1965 (35)	\mathbf{NA}	NA			
Germany		83 SA					
East	1956 - 2010	1941-1966 (26)	1956 - 1989	NI			
West	1956 - 2010	1941-1966 (26)	\mathbf{NA}	NA			
Hungary	1950 - 2009	1935-1965 (31)	1952 - 2009	1937-1965 (29)			
Lithuania	1959 - 2009	1944-1965 (22)	1970 - 2009	1955 - 1965(11)			
Netherlands	1950 - 2009	1935 - 1965(31)	1950 - 2009	1935 - 1965(31)			
Portugal	1940 - 2009	1925-1965 (41)	1959 - 2009	1944–1965 (22)			
Russia	1959 - 2009	1944-1965 (22)	1959 - 2009	1944 - 1965(22)			
$\operatorname{Slovakia}$	1950 - 2009	1935-1965 (31)	1950 - 2009	1935 - 1965(31)			
Sweden	1891 - 2010	1876-1966 (91)	1970 - 2010	1955 - 1966(12)			
Switzerland	1932 - 2009	1917-1965 (49)	1998 - 2009	NA			
U.K.							
England/Wales	1938 - 2009	1923 - 1965(43)	$\mathbf{N}\mathbf{A}$	NA			
Scotland	1945 - 2009	1930-1965 (36)	NA	NA			
U.S.	1933 - 2007	1918-1963 (46)	1933 - 2007	1918 - 1963 (46)			
from the Eurostat							
Belgium*	1954 - 2009	1939 - 1965(27)	$\mathbf{N}\mathbf{A}$	NA			
Denmark	1950 - 2010	1935–1966 (32)	$\mathbf{N}\mathbf{A}$	NA			
Greece	1961 - 2010	1946–1966 (21)	NA	NA			
Iceland	1963-2010	1948–1966 (19)	NA	NA			
Italy	1952 - 2008	1937–1964 (28)	NA	NA			
Norway	1961 - 2010	1946–1966 (21)	NA	NA			
Spain	1971 - 2010	1956 - 1966(11)	NA	NA			

Table 2: Data from the Human Fertility Database and the Eurostat

Note: 1. When a country is included in both databases, we prioritize data from the Human Fertility Database.

905 and 331 completed cohorts for non-parity and parity specific data from 27 countries/areas, including Canada, the U.S., and 23 European countries.

For each completed cohorts, a number of experiments can be implemented by varying the truncation age A which corresponds to a particular completed proportions.

Empirical evaluation

Adopt the **prediction error** index as:

est. CFR – true CFR * 100% PE true CFR - obs. CFR

- how much of the **unfinished fertility** has not \checkmark been correctly estimated
- \checkmark For example: est. CFR=1.8
 - obs. CFR=0.8
 - obs. CFR=1.2
- completed proportion =40%
- completed proportion =60%

- **true CFR**=2.0
 - PE=-16.67%
 - PE = -25.00%

Take **20%** as the PE cut point

birth order	Ν	Proportion Inflation	Freeze Rate	Linear Extrapolation	TFR	BF		
	completed proportion in [10, 30)							
all	2,759	12.74	17.03	18.27				
1	677	5.05	9.47	12.04				
2	833	7.43	10.92	15.26				
3+	998	34.23	31.29	28.06				
	completed proportion in [30, 50)							
all	2,440	13.38	16.96	16.42				
1	597	5.28	10.76	10.90				
2	687	8.02	12.52	15.17				
3+	843	32.56	26.17	23.81				
	completed proportion in [50, 65) mean age							
all	1,999	14.69	17.15	15.91	29.32	19.58		
1	499	6.10	11.87	10.92	23.63	14.08		
2	576	9.30	13.77	14.87	28.98	17.51		
3+	673	34.12	23.42	22.07	34.93	34.48		

Mean absolute PE by method, completed proportion, and birth order

P.I. outperforms conventional methods except on order 3+.

L.E. is the best on order 3+, but its performance is classified "poor" based on the 20% standard.

- Cheng and Goldstein (2011) did some further investigation on these results and found:
 - ✓ tempo effect is similar across birth orders;
 - quantum effect is prominent for higher orders;
 - ✓ our tempo-adjusted predictor fails to deal with the quantum effect well, but neither do others.

Birth order=3+, completed proportion=[30,50)

Birth order=3+, completed proportion=[30,50)

birth order	n adj	Proportion Inflation	Freeze Rate	Linear Extrapolation	TFR	BF		
completed proportion in [10, 30)								
all	2,759	7.40	17.03	18.27				
1	677	3.72	9.47	12.04				
2	833	5.24	10.92	15.26				
3+	998	11.29	31.29	28.06				
completed proportion in [30, 50)								
all	2,440	6.16	16.96	16.42				
1	597	3.96	10.76	10.90				
2	687	4.67	12.52	15.17				
3+	843	8.77	26.17	23.81				
completed proportion in [50, 65) mean age								
all	1,999	5.52	17.15	15.91	29.32	19.58		
1	499	4.71	11.87	10.92	23.63	14.08		
2	576	4.44	13.77	14.87	28.98	17.51		
3+	673	8.42	23.42	22.07	34.93	34.48		

Mean absolute PE by method, completed proportion, and birth order

adj. P.I. outperforms conventional methods regardless of birth order

Conclusion / Remarks

- The period-cohort correspondence is better perceived as a many-to-one relationship.
- The BF measure does help to predict CFR.
- All CFR estimators we investigated suffer from the quantum effect.
- The BF slope information does help to eliminate the bias caused by the quantum effect.
- The auxiliary regressions need a justification (maybe some simulations?).
- The BF slope may be biased for periods near the data end (need some further research on this).