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Abstract

Many industrialized countries face fertility rates below replacement level,
combined with declining mortality especially in older ages. Consequently, the
populations of these countries have started to age. One important indicator
of age structures is the dependency ratio which is the ratio of the nonworking
age population to the working age population. In this work we find the
age-specific immigration profile that minimizes the dependency ratio in a
stationary population with below-replacement fertility. It is assumed that
the number of immigrants per age is limited.We consider two alternative
policies. In the first one, we fix the total number of people who annually
immigrate to a country. In the second one, we prescribe the size of the
receiving country’s population. For both cases we provide numerical results
for the optimal immigration profile, for the resulting age structure of the
population, as well as for the dependency ratio.
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1. Introduction

In many industrialized countries fertility rates are below-replacement
level. Additionally, these countries face a mortality decline, in particular
at ages after retirement. Since fertility decline is very often the dominating
effect, the population of these countries would decline without immigration.
Moreover, the age structure of these countries’ population is changing, show-
ing a growth in the number of elderly people and a declining number of young
people.

One important indicator of age structures is the so-called dependency
ratio, which is the ratio of persons of nonworking age to persons of working
age, usually the 20 to 65-year-olds. A low dependency ratio is desirable
because it indicates that there are proportionally more adults of working age
who can support the young and the elderly of the population. This in turn
is advantageous for the countries’ health-care system and pension schemes.
A downfall of the relative number of working people in a population also
has negative impacts on the growth path of the economy. A possible way to
counter the risks of these demographic changes is to step up immigration.

Similar to (Arthur and Espenshade, 1988; Mitra, 1990; Schmertmann,
1992; Wu and Li, 2003), in this work we consider a population where we
assume that immigration, fertility, and mortality rates are constant and fer-
tility is below-replacement level. These studies already have shown that
such populations eventually converge to stationary populations. Following
(Schmertmann, 1992) from now on we will denote this kind of population
as SI, meaning stationary through immigration. Below-replacement level fer-
tility and mortality rates indicate that without immigration the population
would converge to zero. In our model we assume that the age-specific fertil-
ity rates of immigrants equal those of the natives. Following (Schmertmann,
2011) we do not account for emigration.

In this work, we aim to find the age-specific immigration profile that mini-
mizes the dependency ratio in a stationary population. We do so by applying
optimal control theory which is a rather new methodology in demographic
research, see for example (Feichtinger and Veliov, 2007). We formulate an
optimal control problem where the age-specific immigration profile is the
control variable and the age structure of the population is the state variable.

A similar question to the one posed here is asked in (United Nations,
2001) where the authors determine whether migration of a country can be
used to hinder a decline or aging of its population. They refer to this as
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replacement migration. They examine the situation of eight industrialized
countries during the time period from 1995 to 2050.

In (Schmertmann, 2011) the question is raised how age-targeted immi-
gration policy can be used to increase the relative number of working people
in a population. There, the total number of annual immigrants is fixed and
the problem is reduced to a static optimization problem. What is shown is
that the highest relative number of workers can be achieved if all immigrants
arrive at one single age under the assumption that at each age an arbitrarily
high number of immigrants can be recruited. Schmertmann’s paper leaves
open the question of what the optimal age-specific immigration profile would
look like if not all immigrants are admitted at one single age. This issue,
among others things, is tackled below.

From a mathematical point of view, a similar linear optimal control prob-
lem to the one proposed here is considered in (Dawid et al., 2009). The
authors determine the optimal recruitment policy of a stationary learned so-
ciety, i.e. a professional and hierarchical organization, that minimizes the
average age of the organization for a fixed number of recruits. (Feichtinger
and Veliov, 2007) extended their study to the transitory case. Remarkably,
the optimal recruitment is the same as in the stationary case. That is why
we also start with the stationary case.

In the following, we consider two alternative policies in order to investi-
gate their impact on the optimal immigration profile.

Policy 1: We fix the total number of people who annually immigrate to a
country.

Policy 2: We prescribe the (stationary) total size of the receiving country’s
population.

Moreover, we assume that there are age-specific upper bounds for immigra-
tion. The optimal immigration profile for both policies exhibits a bang-bang
pattern, meaning that the solution jumps from one age-specific bound to the
other and takes no values in between. We prove that for the optimal profile
under Policy 1 it is a fact that besides immigration at young and middle ages,
immigration takes place also in the vicinity of the maximum attainable age.
Such counterintuitive old-age immigration does not happen under Policy 2.
We show that under reasonable assumptions about the vital rates and the
age-specific immigration bounds, the optimal immigration profile under Pol-
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icy 2 is such that it is optimal to allow maximum immigration on not more
than two separate age intervals before the retirement age.

The optimal control approach enables us to determine the marginal value
of an immigrant at a certain age in terms of the dependency ratio, cf. (Wrza-
czek et al., 2010), by interpretation of the so-called adjoint variable, cf.
(Grass et al., 2008), whose clear meaning will be defined in Section 3. As
a consequence we are able to decide what age-specific immigration profile is
optimal for minimizing the dependency ratio. Moreover, the impact of an
a-year-old immigrant on the dependency ratio can be represented as a sum
of two components. The first component, which is referred to as the direct
effect, accounts for a woman’s expected life time inside and outside the work
force. The second component, known as the indirect effect accounts for the
effect on the dependency ratio contributed by her expected number of descen-
dants. Clearly, when an immigrant arrives towards the end of childbearing
age she will have less children than a younger woman and therefore she will
be less of a burden for the dependency ratio of the resulting stationary pop-
ulation. However, the expected remaining time in the working population is
then also reduced, meaning that she will be dependent for a relatively longer
time.

The rest of the paper is organized as follows. In Section 2 we state the
problem. The optimal age-specific immigration profile for a fixed annual
number of immigrants is characterized in Section 3. There, we also present
numerical results for the case study of the Austrian population based on
demographic data from 2008. In Section 4 we consider the total stationary
population size as fixed and provide also some numerical results for the opti-
mal immigration profile and the dependency ratio. In Section 5 the effect of
an additional woman of a certain age on the dependency ratio is explained.
It is shown how this effect can be separated in two parts. In Sections 6 and
7 we discuss the obtained results and indicate points of future work. In Ap-
pendix A we formulate Pontryagin’s Maximum Principle (Alekseev et al.,
1987). In Appendix B and Appendix D we apply the Maximum Principle to
obtain necessary conditions for the optimal solution. The proof of the coun-
terintuitive result that old-age immigration is optimal is given in Appendix
C.
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2. Model Description and Definitions

In the following, α and β denote the lower and upper age limits deter-
mining the working age population and ω is the maximum attainable age of
an individual. We aim to minimize the dependency ratio given as

D(M(·)) :=
∫ α

0 N(a) da+
∫ ω
β N(a) da

∫ β
α N(a) da

, 0 < α < β < ω,

by choosing the age distribution of immigrantsM(·). WithD(M(·)) we mean
the dependency ratio that results when realizing the immigration profileM(·)
and N(a) denotes the number of resulting females in the population of age
a.

We come up with the following optimal control problem:

min
M(a)

D, (2.1)

subject to

Ṅ(a) = −µ(a)N(a) +M(a), (2.2)

N(0) =
∫ ω

0
f(a)N(a) da, (2.3)

0 ≤M(a) ≤ M̄(a). (2.4)

Here, the age a is considered as a continuous variable and Ṅ(a) denotes
the derivative of N(a) with respect to a. The immigration age profile M(·)
is referred to as control, since it is the controlable input to the optimization
problem. The population structure is determined by the so - called state
variable of the problem, N(a), which is the number of people of age a. In
contrast to the control, the state variable cannot be directly influenced. By
f(a) and µ(a), we denote age-specific fertility and mortality rates which
do not change with time and are continuous functions in a. Additionally,
we assume that

∫ ω
0 µ(a) da = +∞, cf. (Anita, 2000), which ensures that

N(ω) = 0 holds. With M̄(a) we denote the age-specific immigration bounds
which are assumed to be continuous.1

1From a mathematical point of view the reason for imposing these age-specific bounds
is the applicability of Pontryagin’s Maximum Principle. However, more practically spoken
these bounds are justifiable because they may reflect the fact that age is not the only factor
that should be taken into account when determining the optimal immigration policy and
also the number of potential immigrants of a certain age is limited.
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Note, that the dynamics (2.2) describing the age structure of the popu-
lation only holds for a stationary population.

In this work, we consider two alternative policies:

Policy 1. We prescribe the total number of immigrants Mtot

Mtot =
∫ ω

0
M(a) da. (2.5)

Policy 2. We prescribe the stationary population size Ntot

Ntot =
∫ ω

0
N(a) da. (2.6)

These policies represent constraints on the number of immigrants and the
total population size.

We define l(a) := e−
∫ a

0 µ(x) dx which is the probability that a female sur-
vives at least a years.

We recall the reproductive value of an a-year-old female, introduced in
(Fisher, 1930) (see also (Keyfitz, 1977)), which is the expected number of
future daughters of an individual from her current age onward, given that
she has survived to this age as

v(a) =
∫ ω

a

l(x)
l(a)f(x) dx.

Accordingly, the population’s net reproduction rate in a stationary population
is the average number of daughters a female will have,

R =
∫ ω

0
l(a)f(a) da.

The support of f(·) is a subset [amin, amax] ⊂ [0, ω], where amin and amax
denote the youngest and oldest age of childbearing, respectively. Presumably,
fertility f(·) is below-replacement, which means it is not high enough to
replace the current population. This property of below-replacement fertility
(and mortality) can be expressed in terms of the population’s reproduction
rate, meaning that R < 1 must hold.

Note, that the control M(·) enters linearly the problem. This property
of the optimal control problem is responsible for the bang-bang behavior of
the solution obtained below.
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3. The optimal immigration profile for a fixed number of immi-
grants

In this section we analyze problem (2.1)–(2.5) by making use of optimal
control theory. Our aim is to find the optimal immigration profileM∗(·) that
minimizes D.

In order to determine the optimal immigration profile we derive necessary
conditions to characterize the optimal solution. Therefore, we need to intro-
duce constants λ1, λ2, called the Lagrange multipliers, and another notion
from optimal control theory, the adjoint variable ξ.

The adjoint variable and its interpretation as shadow price
As the name implies, the adjoint variable is related to another variable:

the state variable N . It is the derivative of the so-called value function, i.e.
the objective function evaluated at the optimal solution, with respect to the
state variable. Therefore, in economic applications of optimal control theory,
the adjoint variable is interpreted as shadow price of the state variable. In
line with this interpretation, here ξ(a) gives the shadow price of an individual
of age a. As can be seen below, for this particular optimal control problem
considered in here the shadow price is a part of the effect of adding an
additional immigrant of age a.

The term shadow price is commonly used in capital theory, cf. (Dorfman,
1969; Léonard and Long, 1992). There, it is interpreted as the highest hy-
pothetical — therefore also called shadow — price a rational decision-maker
would be willing to pay for owning an additional unit of the corresponding
state variable at time a measured by the discounted (extra) future profit.
Note, that the shadow price is not a real market price and therefore can
also have a negative value. See also (Grass et al., 2008) for a more detailed
discussion of the economic interpretation of the maximum principle.

The Lagrange multipliers
We also introduce the constants λ1, λ2 and refer to them as Lagrange

multipliers. The Lagrange multiplier λ1 reflects the marginal worth of an
increase in the annual flow of newborns. The constant λ2 gives the marginal
change in the dependency ratio when adding an additional immigrant per
year.
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Note, that for a given age interval [α, β] ⊆ [0, ω] the function I[α,β](·) is
defined as

I[α,β](a) =




1 if a ∈ [α, β],
0 otherwise.

Then the optimal immigration profile M∗(·) and the corresponding popula-
tion structure N∗(·) can be characterized as:

Theorem 1. If (N∗(·),M∗(·)) is an optimal solution of problem (2.1)–(2.5),
then there are Lagrange multipliers λ1, λ2 ∈ R and an adjoint variable ξ(·),
such that:

(i) the continuous function ξ(·) on [0, ω] satisfies

ξ̇(a) = µ(a)ξ(a)− λ1f(a)− (D(M∗(·)) + 1)2

Ntot(M∗(·)) I[α,β](a) + (D(M∗(·)) + 1)
Ntot(M∗(·)) ,

ξ(0) = λ1, ξ(ω) = 0, (3.7)

(ii) and the following maximum principle holds for almost every a ∈ (0, ω),
i.e. besides of isolated points:

(ξ(a)− λ2)M∗(a) = max
0≤M≤M̄(a)

(ξ(a)− λ2)M. (3.8)

Proof 1. For the proof of Theorem 1 see Appendix B.

Theorem 1 provides necessary conditions (3.7),(3.8) for the solution of
problem (2.1)–(2.5), meaning that they constitute requirements that the op-
timal solution has to fulfill. The existence of an optimal solution follows from
a general argument.

From (3.8) it can immediately be concluded that the optimal control is
of bang-bang type, jumping from one boundary to the other. Therefore,
function ξ(·) − λ2 is usually referred to as switching function because the
change of its sign determines the ages a at which the optimal control switches
from one boundary to the other in consequence of (3.8):

M∗(a) =





M̄(a) if ξ(a) > λ2,

not determined if ξ(a) = λ2,

0 if ξ(a) < λ2.

(3.9)
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We assume that equality ξ(a) = λ2 happens only in isolated points, so that
the values M∗(a) at these points have no effect on the dependency ratio.
This assumption holds for fertility and morality rates that are not linearly
related, which can be concluded by additionally requiring that the derivative
of the switching function, ξ(·)−λ2, is 0 on an interval [a, a] which would be a
violation of the assumption that the switching function is 0 only in isolated
points 2.

To obtain the optimal immigration profile it remains to determine ξ(·)
and λ2. The right hand side of the differential equation (3.7) is discontinuous
at ages a = α and a = β and therefore the solution ξ has two kinks at each
of these ages.

We note that (3.7) is a boundary value problem for a linear differen-
tial equation. By using the Cauchy formula for the solution of an ordinary
differential equation (3.7) we obtain the solution

ξ(a) = λ1v(a) + (D(M∗(·)) + 1)
Ntot(M∗(·))

(
(D(M∗(·)) + 1)e[α,β](a)− e[0,ω](a)

)
.

(3.10)

Using the boundary condition ξ(0) = λ1 and noting that R = v(0) we obtain
that

λ1 =
(D(M∗(·))+1)
Ntot(M∗(·))

(
(D(M∗(·)) + 1)e[α,β](0)− e[0,ω](0)

)

1−R (3.11)

holds. Here, e[0,ω](a) =
∫ ω
a

l(x)
l(a) dx is the life expectancy in [0, ω] at age a.

Similarly, e[α,β](a) =
∫ ω
a

l(x)
l(a)I[α,β](x) dx is the working life expectancy of an a-

year-old, reflecting the expected number of years an a-year-old would spend
working. Clearly, e[α,β](a) = 0 for a ≥ β. With (3.9) and expressions (3.10)–
(3.11) we are now able to obtain the optimal immigration profileM∗(·), where
the Lagrange multiplier λ2 has to be determined in such a way, that (2.5)
holds for the resulting solution.
In Appendix C it is shown, that under the additional condition that the
contribution of an additional a-year-old immigrant to the number of workers

2More precisely, this assumption is fulfilled for fertility and mortality rates such that
for any d ∈ R meas{a ∈ Ω : λ2µ(a)− λ1f(a) = d} = 0., i.e. this equality only holds on a
set of measure zero, where the measure is meant in the sense of Lebesque.
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in the resulting SI population (measured in years) must not be proportional
to its contribution to the whole population for almost every age a ∈ [0, ω],
the optimal immigration profile M∗(·) is such that arbitrarily close to the
maximum age ω there are ages where immigration is optimal. An individual’s
contribution consists of her own expected years lived in the host country
and the analog contribution of all her future descendants. Since we aim to
minimize the relative number of dependent people in the population, the
fact that immigration at the end of the life horizon is optimal seems to be
counterintuitive. This counterintuitive property of the optimal solution is
due to the age-specific immigration bounds, (2.4), that are introduced in
this model. If they are removed, as done in a static set up in (Schmertmann,
2011), this effect probably cannot be observed anymore. We also overcome
this counterintuitive result in Section 4 by considering Policy 2, where we fix
the size of the stationary population.

3.1. A case study: the Austrian case
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Figure 3.1: Female mortality rate µ(a) (left, logarithmic scale) and fertility
rate f(a) (right); Austria 2008.

The numerical results for the optimal immigration profile and the depen-
dency ratio obtained in this section are based on the analytical derivations
above. In the following, we will assume that α = 20, β = 65, and ω = 110.
For the computations we initialize the age structure of demographic variables
referring to Austrian data as of 2008, cf. Figure 3.1, and interpolate these

10



data piecewise linearly to obtain continuous representations of the vital rates.
The actual age-specific immigration numbers of 2008 are denoted byMact(a).

Scenario 1. We set

M̄(a) = 2Mact(a), ∀a ∈ [0, ω],

which corresponds to a doubling of the number of immigrants at all ages
compared to the 2008 level. For Mtot we prescribe a total volume of 80000
females.
The resulting age profile that fulfills the maximization condition (3.8) is

M∗(a) =



M̄(a) if a ∈ [11, 49] ∪ [82, 110],
0 otherwise.

(3.12)

This can be concluded from the values of the adjoint variable ξ(a) at
ages a depicted in Figure 3.2a. The solid line in Figure 3.2a corresponds
to the λ2-level. Consequently, for ages where ξ(a) has values larger than λ2
immigration is at its upper bound and for ages where ξ(a) is smaller than
λ2 the optimal immigration profile is zero. The adjoint variable ξ(·) exhibits
two kinks at ages α = 20 and β = 65, due to the discontinuity of the right
hand side of the differential equation (3.7). For a detailed explanation of the
shape of the adjoint variable as a function of a see Section 5. The resulting
optimal immigration profile M∗(a) is illustrated in Figure 3.2c. In Figure
3.2e, the age structure of the optimal SI population is depicted. As typical
for a closed stationary population, the age structure of an SI population
exhibits a flat line at young ages due to the low mortality at these ages. The
resulting minimal dependency ratio is 75.14%3, which corresponds to about
75 dependents per 100 workers. The resulting total SI (stationary through
immigration) population size is 13.0 million females.

Scenario 2. We also performed the calculations with Mtot = 50000
which is close to the actual total number of (female) immigrants for Aus-
tria in 2008. The age-specific upper bound was set to M̄(a) = 20Mact(a)
which corresponds to a high supply of immigrants at all ages. From the
switching function depicted in Figure 3.2b, we can conclude that the optimal

3Typically, the dependency ratio is expressed as percentage, i.e. 100×D.
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immigration profile reads

M∗(a) =



M̄(a) if a ∈ [33, 36] ∪ [109, 110],
0 otherwise.

(3.13)

See also Figure 3.2d. The resulting minimal dependency ratio is 72.24%. This
corresponds to a share of 58.1% workers in the population. The resulting total
size of the female SI population is 4.1 million.
Figure 3.2f represents the age structure of the optimal SI population. What
is striking is that it is optimal to let people immigrate at the end of the age
interval, although they are part of the economically dependent population.
This can be explained by the fact that (2.5) has to be fulfilled and the age-
specific bounds hold.

4. The optimal immigration profile for a fixed population size

We slightly change the model and instead of fixing the volume of im-
migrants (Policy 1), we require that the number of people in the population
equals a prescribed value (Policy 2), i.e. we consider problem (2.1)–(2.4) with
the additional constraint (2.6). Theorem 4 below states necessary conditions
for the optimal solution.

Theorem 2. If (Ñ∗(·), M̃∗(·)) is an optimal solution of problem (2.1)–(2.4)
and (2.6), then there are Lagrange multipliers λ̃1, λ̃2, and an adjoint variable
ξ̃(·) such that:

i) the continuous function ξ̃(·) on [0, ω] satisfies

˙̃ξ(a) = µ(a)ξ̃(a)− λ̃1f(a)− I[α,β](a) + λ̃2,

ξ̃(0) = λ̃1, ξ̃(ω) = 0, (4.14)

ii) and the maximum principle holds for almost every a ∈ (0, ω)

ξ̃(a)M̃∗(a) = max
0≤M≤M̄(a)

ξ̃(a)M. (4.15)

Proof 2. For the proof see Appendix D.
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Figure 3.2: Policy 1: The adjoint variable and optimal solution of problem
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The black line indicates the switching line.
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The optimal immigration profile is again of bang-bang type,

M̃∗(a) =





M̄(a) if ξ̃(a) > 0,
not determined if ξ̃(a) = 0,
0 if ξ̃(a) < 0,

(4.16)

and it remains to determine ξ̃(·). Similar calculations as in Section 3 give

ξ̃(a) = λ̃1v(a) + e[α,β](a)− λ̃2e[0,ω](a), (4.17)

where, using the boundary condition ξ(0) = λ̃1, we obtain

λ̃1 = e[α,β](0)− λ̃2e[0,ω](0)
1−R . (4.18)

In order to determine the optimal solution (Ñ∗(·), M̃∗(·)), the Lagrange mul-
tiplier λ̃2 in (4.14) has to be chosen in such a way that condition (2.6) is ful-
filled. Therefore, the value of λ̃2 depends on the choice of the prescribed value
Ntot. Note, that ξ̃(·) is independent of the optimal solution (Ñ∗(·), M̃∗(·))
and can therefore be calculated separately for each λ̃2.

4.1. Analytical study of the optimal immigration profile
In the following, we derive general results for the optimal immigration

profile for given age-specific fertility f(a) and mortality µ(a) rates. We show
that the optimal immigration profile attains its upper bound M̄(a) on no
more than two separate intervals.

Since the change of the sign of the adjoint variable ξ̃(a) determines
the switches of the optimal solution from one limit to the other, we count
how many times the switching function (4.17) can cross its switching level
ξ̃(a) = 0. To estimate this number from above we count how many times
the derivative in (4.14) can change its sign at level ξ̃(a) = 0 from positive to
negative

˙̃ξ(a)
∣∣∣∣
ξ̃=0

= −λ̃1f(a)− I[α,β](a) + λ̃2 = 0. (4.19)

Assumption 1. The upper limit M̄(a) is such that if M(a) ≡ M̄(a), then∫ ω
0 N(a) da > Ntot.

Assumption 2. If M(a) ≡ 0, then
∫ ω
0 N(a) da = 0.
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That means that below-replacement fertility (and mortality) holds.

Corollary 1. There should be at least one interval with ξ(a) > 0.

Otherwise the optimality condition (4.16) requires M(a) = 0 for almost
every a. This, however, leads to the contradiction between Assumption 2
and Ntot > 0 in (2.6). �

Proposition 1. λ̃2 ∈ [0, 1].

Indeed, λ̃2 < 0 leads to λ̃1 > 0 in (4.18) and both lead to ˙̃ξ(a)
∣∣∣∣
ξ̃=0

< 0
in (4.19) for all a ∈ [0, ω) so that ξ(a) > 0 on a ∈ [0, ω) which contradicts
Assumption 1. If λ̃2 > 1 then λ̃1 < 0 because e[α,β](0) < e[0,ω](0), thus the
derivativein (4.19) has the following property ˙̃ξ(a)

∣∣∣∣
ξ̃=0

= −λ̃1f(a)−I[α,β](a)+

λ̃2 > −1 + λ̃2 > 0 for all a ∈ [0, ω], since min{f(a)} = 0. But to satisfy
terminal condition ξ̃(ω) = 0, for the adjoint variable it should hold, that
ξ̃(a) < 0 for a ∈ [0, ω). That contradicts Assumption 2 and Ntot > 0 in (2.6).
�

Proposition 2.

a) ξ̃(a) < 0 if λ̃2 > 0 for all a ∈ [β, ω),

b) ξ̃(a) = 0 if λ̃2 = 0 for all a ∈ [β, ω].

Indeed, since e[α,β](a) = 0 and v(a) = 0 holds for all a ∈ [β, ω] it follows
from (4.17) and Proposition 1 that ξ̃(a) = −λ̃2e[0,ω](a) ≤ 0, a ∈ [β, ω]. Thus,
b) is obvious and a) follows from the inequality e[0,ω](a) > 0 for all a ∈ [0, ω)
provided that l(a) > 0 for all a ∈ [0, ω). �

Assumption 3. The fertility schedule f(a) is single peaked with support to
the left from β and to the right from 0, i.e. amin < α < amax ≤ β.

Let us denote the maximal fertility age as afmax = arg max(f(a)).

Lemma 1. The maximal number of separate intervals on which ξ̃(a) > 0
is two and denoting these intervals Γ1 and Γ2 so that for all a1 ∈ Γ1 and
a2 ∈ Γ2 the inequality a1 < a2 holds, we have (see Fig. 4.3):
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Figure 4.3: The adjoint variable ξ̃(·) determining the optimal immigration
for two separate age intervals Γ1 and Γ2 in two cases: a) λ̃1 > 0 (left) and
b) λ̃1 < 0 (right).

a) if afmax < α then α ∈ Γ2,

b) if afmax > α then α ∈ Γ1.

It follows from Proposition 2 that Γ1,Γ2 ⊂ [0, β].
The derivative (4.19) can change its sign from plus to minus only at a = α

because of the jump of the function I[α,β](a) or/and at a = a0, where a0 is such
a root of the equation ˙̃ξ(a0)

∣∣∣∣
ξ̃=0

= 0 that ¨̃ξ(a0)
∣∣∣∣
ξ̃=0

= −λ̃1ḟ(a0) < 0. It follows

from Proposition 1 and Assumption 3 that equation ˙̃ξ(a0)
∣∣∣∣
ξ̃=0

= 0 cannot
have more than two roots all located either in [0, α) or in [α, β] depending
on the sign of λ̃1.

If λ̃1 > 0 then equation ˙̃ξ(a0)
∣∣∣∣
ξ̃=0

= 0 can only have roots in [0, α), where

a0 is the first root, if any, of the equation −λ̃1f(a) + λ̃2 = 0.
If λ̃1 < 0 then equation ˙̃ξ(a0)

∣∣∣∣
ξ̃=0

= 0 can have roots only in [α, β] so a0

is the second root, if any, of the equation −λ̃1f(a) − 1 + λ̃2 = 0, which can
happen only when afmax > α.

Thus, it follows from the continuity of the function ξ̃(a) that it can be
positive on not more than two separate intervals. It is also easy to see
graphically in Fig. 4.3 that if the function ξ̃(a) is positive on two separate
intervals Γ1,Γ2 ⊂ [0, β], these intervals must contain both points a0 and α
where derivative (4.19) changes its sign, so that a0 ∈ Γ1, α ∈ Γ2 when λ̃1 > 0
and α ∈ Γ1, a0 ∈ Γ2 when λ̃1 < 0. �
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4.2. A case study: the Austrian case
For the calculations we initialize again the fertility and mortality profiles

with Austrian data as of 2008, cf. Figure 3.1. The Lagrange multiplier λ̃2 is
calculated such that condition (2.6) is fulfilled by the optimal solution. For
the total population size we prescribe the resulting sizes from Section 3, i.e.
Ntot = 13.0 million and Ntot = 4.1 million, respectively.

Scenario 1. Therefore, by setting Ntot = 13.0 million and M̄(a) =
2Mact(a), we achieve a corresponding dependency ratio D = 74.73% which
is slightly smaller than the one we obtain above and the resulting volume of
immigrants is 72000. The corresponding optimal immigration profile reads
as

M̃∗(a) =



M̄(a) if a ∈ [9, 41],
0 otherwise,

(4.20)

which is determined according to (4.16). Figure 4.4a shows the corresponding
adjoint variable ξ̃(·) and Figure 4.4c the optimal immigration profile. The
optimal age structure is depicted in Figure 4.4e.

Scenario 2. We also calculate the optimal immigration profile for Ntot =
4.1 million females and M̄(a) = 20Mact(a),

M̃∗(a) =



M̄(a) if a ∈ [33, 36],
0 otherwise.

(4.21)

Figure 4.4b shows the adjoint variable ξ̃(·) and Figure 4.4d the optimal im-
migration profile. The resulting optimal population age structure is shown
in Figure 4.4f. For these parameter values we achieve a corresponding depen-
dency ratio D = 72.24% and the resulting volume of immigrants is 50000.
We observe that although the optimal immigration profiles differ, we obtain
the same numerical results for the dependency ratio D and the total num-
ber of immigrants, for problem (2.1)–(2.5) and problem (2.1)–(2.6) for these
numerical values. This is because the upper bound M̄(a) is zero for ages
a > 95.

From the switching functions in Figure 4.4a and Figure 4.4b we also see
that it is not optimal that people immigrate towards the end of the life cycle.

5. Direct and indirect effect of an additional individual

The adjoint variables ξ(a) and ξ̃(a) may also be interpreted as shadow
prices of N(a) and Ñ(a), meaning that they reflect the decrease of the depen-
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(d) Scenario 2: The optimal immigration
profile M̃∗(·).
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Ñ
(a
)

(e) Scenario 1: The age structure of the
SI population Ñ∗(·).
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(f) Scenario 2: The age structure of the
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Figure 4.4: Policy 2: The adjoint variable and optimal solution of problem
(2.1)–(2.4) under Scenario 1 to the left and under Scenario 2 to the right.
The black line indicates the zero line.
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dency ratio, when the optimal age structure of the population is marginally
increased at age a, roughly speaking, when the population is increased by
one a-year-old. A positive value of the adjoint variable means a decrease in
the dependency ratio.

Note, that in this dynamic set up, a change of the (optimal) age structure
at one particular age, also affects the age structure at other ages.

This shadow price, see Equation (3.10) and (4.17), consists of two parts

ξ(a) = ξd(a) + λ1v(a). (5.22)

As pointed out in a more general setting in (Wrzaczek et al., 2010), the direct
effect ξd(a) determines the marginal value of an individual of age a given by
her participation in the labor force. The direct effect accounts positively for
her expected remaining years in [α, β] and negatively for her remaining life
expectancy in [0, α] (for a ≤ α) and [β, ω].

The indirect effect of an a-year-old, λ1v(a), is her reproductive value,
i.e. the number of expected future daughters, weighted by the shadow price
of newborns, λ1, since ξ(0) = λ1. Therefore, the indirect effect can be in-
terpreted as the value of expected future births of an a-year-old in units of
the dependency ratio. This is a generalization of the interpretation of the
reproductive value, cf. (Fisher, 1930; Wrzaczek et al., 2010). Note, that the
indirect effect can also be negative, namely when an additional newborn is
negatively valued for the population. The corresponding interpretation holds
for λ̃1 in (4.17).

The Lagrange multiplier λ2 may also be interpreted as the marginal effect
on the dependency ratio when changing the total number of immigrants
Mtot. Similarly, λ̃2 measures the effect of a marginal change of the prescribed
population size Ntot on the dependency ratio.

In Figure 5.5 we plotted the direct and indirect effect of an additional a-
year-old separately. We consider again the Austrian case for problem (2.1)–
(2.5), where we set Mtot = 50000 and M̄(a) = 20Mact(a) ∀a. The dotted line
corresponds to the weighted reproductive value, representing the indirect
effect. The dashed line corresponds to the direct effect. The sum of these
two lines, by definition, exhibits ξ(·), which is depicted by the solid line.
As it can be seen in Figure 5.5, the indirect effect reduces the absolute
value of the adjoint variable ξ(·) in early ages, preventing these ages to be
optimal. Furthermore, this effect is zero for ages older than the maximum
age of childbearing. Therefore, after this age the direct effect and the adjoint
variable coincide.
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We also see from equation (3.10) that the direct effect always increases
until age 20. This is due to the fact, that the remaining life expectancy de-
creases, implying a higher value of this individual in units of the dependency
ratio and also because the ratio between number of person-years lived in the
working ages,

∫ β
α l(x) dx, and the individual’s probability to survive until age

a, l(a), increases with a.
Moreover, we see in Figure 5.5, that the direct effect reaches its maxi-

mum at age 20, since these individuals spend their whole working life in the
receiving country, and then falls monotonically until age 65. However, the
sharp increase in the indirect effect between ages [20, 40] shifts the optimal
age away from 20 and further to the right.

The increase of the direct effect after age 65 is due to the fact that the
remaining life expectancy in [0, ω], which is the only term left in equation
(3.10), is decreasing with age, and therefore the burden induces by these
females on the dependency ratio is reduced.

Moreover, for the particular optimal control problem considered in here
it holds that under Policy 1, ξ(a) − λ2, and under Policy 2, ξ̃(a), give the
decrease in the dependency ratio when changing the optimal age structure
of immigrant inflows. So, under Policy 2 the shadow price is only a part of
the total effect of an additional immigrant.

6. Discussion

The aim of the present paper is to determine the age-specific immigra-
tion policy that minimizes the dependency ratio in a population with below-
replacement fertility assuming that the vital rates remain constant over time.
We apply optimal control theory which is a rather new approach in demo-
graphic research. We assume that there are age-specific bounds that con-
strain the immigration profile from above. We consider two alternative poli-
cies. In the first one, we prescribe the total number of immigrants. In the
second one, we fix the total population size while the rest of the model re-
mains the same. Since the immigration profile enters the problem linearly,
the solution exhibits a bang-bang behavior, which depends on th sign of
the so-called switching function. The shape of the switching function with
varying age a is determined by the adjoint variable.

In the model with a fixed total number of immigrants, it is shown that in
the optimal solution there are ages in the vicinity of the maximum attainable
age where immigration occurs. When we fix the total population size of the
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Figure 5.5: The direct (dashed line), indirect (solid blue line) and total (solid
black line) effect of an additional a-year-old.

receiving country, the optimal solution is that immigration happens at not
more than two separate age intervals and in ages younger than the retirement
age. We present numerical results for a case study of the Austrian popula-
tion based on demographic data from 2008 which underline our theoretical
findings.

Moreover, by analyzing the shape of the switching function or, equiva-
lently, the adjoint variable, and interpreting it as a shadow price, we deter-
mine the marginal value of an a-year-old individual in terms of the objective
function.

7. Extensions

In future work, we also aim to study the transitory case, where we con-
sider time varying fertility, mortality and immigration rates. Similar as in
(Feichtinger and Veliov, 2007), the resulting problem is a distributed con-
trol problem, which is formalized on infinite horizon. The state dynamics
is a first order partial differential equation, which is of McKendrick-type
(Keyfitz, 1977; Keyfitz and Keyfitz, 1997). Although, the similarity in the
structure of the problem indicates that as in (Feichtinger and Veliov, 2007)
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it holds that for stationary data, i.e. fertility and mortality rates, the opti-
mal solution is also stationary, this result does not follow immediately and
needs some deeper mathematical involvement. Also in the transitory case,
similar analysis of the adjoint variables which again can be interpreted as
shadow prices can be carried out, cf. (Wrzaczek et al., 2010). Therefore,
optimality conditions for this distributed parameter control model have to
be derived in order to obtain necessary conditions for the optimal solutions.
These optimality conditions obtain partial differential equations, which have
to be solved numerically.
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Appendix A. Pontryagin’s Maximum Principle

We shall formulate Pontryagin’s Maximum Principle in the form obtained
in (Alekseev et al., 1987). Let us consider the problem

L0(x(·), u(·), t0, t1) =
∫ t1

t0
f0(t, x(t), u(t)) dt

+ψ0(t0, x(t0), t1, x(t1))→ inf, (A.1)
dx
dt = ϕ(t, x(t), u(t)), u(t) ∈ U, (A.2)

Li(x(·), u(·), t0, t1) =
∫ t1

t0
fi(t, x(t), u(t)) dt

+ψi(t0, x(t0), t1, x(t1)) ≶ 0, (A.3)

where i = 1, 2, . . . ,m. We introduce the so-called Pontryagin function

H(t, x, u, p) = pϕ(t, x, u)−
m∑

i=0
λi fi(t, x, u), (A.4)

where function p(t) is called the adjoint and λi are the Lagrange multipliers.
In Alekseev et al. (1987), p. 218 the following theorem is proven.
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Theorem 3 (Pontryagin Maximum Principle). Let G be an open set in the
space R × Rn, let W be an open set in the space R × Rn × R × Rn and
let U be an arbitrary topological space. Let the functions fi: G × U → R,
i = 0, 1, . . . ,m, ϕ: G × U → Rn, and their partial derivatives with respect
to x be continuous in G × U, and let the functions ψi, i = 1, . . . ,m are
continuously differentiable in W .

If (x∗(·), u∗(·), t∗0, t∗1, ) is an optimal process for the problem (A.1)–(A.3),
then there are Lagrange multipliers

λ0 ≥ 0, λ = (λ1, . . . , λm),

not all zero, and an adjoint variable p(·) such that:

a) the adjoint equation

dp
dt = −p(t) ∂ϕ

∂x
(t, x∗(t), u∗(t)) +

m∑

i=0
λi
∂fi
∂x

(t, x∗(t), u∗(t))

= − ∂H
∂x

(t, x∗(t), u∗(t), p(t)), (A.5)

along with the transversality conditions

p(t∗1) = −
m∑

i=0
λi
∂ψi
∂x1

(t∗0, x∗0, t∗1, x∗1) (A.6)

p(t∗0) =
m∑

i=0
λi
∂ψi
∂x0

(t∗0, x∗0, t∗1, x∗1) (A.7)

H∗(t∗1) = −
m∑

i=0
λi
∂ψi
∂t1

(t∗0, x∗0, t∗1, x∗1) (A.8)

H∗(t∗0) =
m∑

i=0
λi
∂ψi
∂t0

(t∗0, x∗0, t∗1, x∗1) (A.9)

the maximum principle in Hamiltonian (Pontryagin) form

H∗(t) ≡ H(t, x∗(t), u∗(t), p(t)) ≡ max
v∈U

H(t, x∗(t), v, p(t)) (A.10)

the function H∗(t) being continuous on the closed interval [t∗0, t∗1].
b) the condition of concordance of signs holds:

λi ≷ 0; (A.11)
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c) the conditions of complementary slackness hold:

λiLi(x∗(·), u∗(·), t∗0, t∗1) = 0, i = 1, 2, . . . ,m (A.12)

(inequalities (A.11) mean that λi ≥ 0 if Li ≤ 0 in condition (A.3), λi ≤ 0 if
Li ≥ 0, and λi may have an arbitrary sign if Li = 0).

Appendix A.1. Interpretation of the adjoint variable
One reason why the Maximum Principle is very often applied to economic

problems, is the interpretation of the adjoint variable as shadow price. If an
optimal control u∗ is implemented and the corresponding optimal evolution
of the state is x∗, then an infinitesimal external change of the state variable
∆x∗ at any time t would change the optimal performance by p(t)∆x∗. This
results from the heuristic proof of the Maximum Principle via the Hamilton-
Jacobi-Bellman equation, cf. (Léonard and Long, 1992), where one can see
that for the adjoint variable p(t) it holds that

p(t) := ∂V ∗

∂x
(t, x(t)).

Function V ∗ : [0, T ]× Rn → R is called value function:

V ∗(t, x(t)) = inf
u∈U

∫ t1

t
f0(τ, x(τ), u(τ)) dτ.

It gives the optimal objective value beginning at t in state x(t), cf. (Dorfman,
1969; Léonard and Long, 1992).

Appendix A.2. Example of a Fishery Model
To illustrate the application of the above theorem, let us turn to an

idealized nonlinear dynamic optimization problem which is a variation of the
fishery model stated in Clark (1976). The state equation is

dx
dt = ϕ(x)− u (A.13)

with given initial condition
x(0) = x0. (A.14)

It is assumed that ϕ(x) is continuously differentiable in x. Now we suppose
that the revenue obtained from harvesting is a nonlinear function R(u), with
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R(u) being a smooth, convex, nonnegative function of harvesting u ∈ [0, ū].
For simplicity we neglect the costs of harvesting. The objective function is
then

L0(x(·), u(·)) =
∫ T

0
e−ρtR(u(t)) dt→ max

u(·)∈[0,ū]
(A.15)

subject to the state equation (A.13) and the integral constraint due to a
fishing quota ψ1 > 0

L1(x(·), u(·)) =
∫ T

0
u(t) dt− ψ1 ≤ 0, (A.16)

where ρ > 0 is the discount rate. We assume that the specifications of the
problem are such that for any feasible control u no extinction of the species
is possible at any time t ∈ [0, T ].

In terms of problem (A.1)–(A.3) we have f0(t, u(t)) = −e−ρtR(u(t)) and
f1 = u(t). The Pontryagin function (A.4) of this problem is

H = p (ϕ(x)− u) + λ0e
−ρtR(u)− λ1u. (A.17)

Thus, the necessary optimality conditions (A.5)–(A.12) are as follows. The
adjoint equation (A.5) along with transversality condition (A.6) is

dp
dt = −p ∂ϕ

∂x
(x), p(T ) = 0. (A.18)

The maximum principle (A.10)

max
u∈[0,ū]

(p (ϕ(x)− u) + λ0e
−ρtR(u)− λ1u) (A.19)

where λ0 ≥ 0 and λ1 ≥ 0 provided that λ1
(∫ T

0 u(t) dt− ψ1
)

= 0. If λ0 6= 0,
like in this example, then it is set λ0 = 1.

Appendix B. Proof of Theorem 1

In order to prove the existence of Langrange multipliers λ1, λ2 ∈ R and
an adjoint variable ξ(·), such that the optimal solution N∗(·),M∗(·)) can be
characterized by conditions (3.7) – (3.8), we state the optimal control problem
in the form of (A.1)–(A.3) so that the maximum principle in Appendix A is
applicable.
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Therefore, in addition to N(a) we introduce the auxiliary state variables
X(a), Y (a), being continuous functions of a. The corresponding state equa-
tions read

Ẋ(a) = N(a), X(0) = 0, (B.1)
Ẏ (a) = I[α,β](a)N(a), Y (0) = 0. (B.2)

Equivalently, it holds that

X(a) =
∫ a

0
N(τ) dτ and Y (a) =

∫ a

α
I[α,β](τ)N(τ) dτ.

In this way we can express the objective function (2.1) by evaluating functions
X(·) and Y (·) at the terminal value ω. Therefore, solving problem (2.1)–(2.4)
with the additional constraint (2.5) is equivalent to solving

min
M(a)

X(ω)
Y (ω) , (B.3)

subject to

Ṅ(a) = −µ(a)N(a) +M(a), (2.2)
Ẋ(a) = N(a), X(0) = 0, (B.1)
Ẏ (a) = I[α,β](a)N(a), Y (0) = 0, (B.2)

N(0) =
∫ ω

0
f(a)N(a) da, (2.3)

0 ≤M(a) ≤ M̄(a), (2.4)

Mtot =
∫ ω

0
M(a) da. (2.5)

Introducing Lagrange multipliers λ1, λ2, and the adjoint variables ξ(·), ζ(·)
and η(·) we define Pontryagin’s function as

H(a,N,X, Y,M, ξ, ζ, η) =
ξ (−µ(a)N +M) + ζN + ηI[α,β](a)N

− λ0
X(ω)
Y (ω) − λ1f(a)N − λ2M. (B.4)
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The conditions stated in the maximum principle (Appendix A) provide
necessary conditions for the optimal solution (N∗, X∗, Y ∗,M∗) of problem
(B.3)–(2.5) which can be summarized by the following expressions.

The maximum principle according to (A.10) reads

(ξ(a)− λ2)M∗(a) = max
0≤M≤M̄(a)

H = max
0≤M≤M̄(a)

(ξ(a)− λ2)M, (B.5)

and the adjoint equation (A.5) along with transversality condition (A.6) can
be reduced to

ξ̇(a) = µ(a)ξ(a)− λ1f(a)− X(ω)
Y 2(ω)I[α,β](a) + 1

Y (ω) , ξ(0) = λ1, ξ(ω) = 0,

(B.6)
where η = X(ω)

Y 2(ω) = (D+1)2

Ntot
and ζ = 1

Y (ω) = D+1
Ntot

. �

Appendix C. Optimal immigration arbitrary close to the maxi-
mum attainable age

The precise formulation of this result reads as follows.

Theorem 4. Let M(·) be an arbitrary immigration profile which fulfills
(2.4),(2.5) and additionally M(a) < M̄(a) for a ∈ [ω− δ, ω] and some δ > 0.
Then there is an immigration profile M̃(·) which satisfies (2.4),(2.5) such
that

D(M̃) < D(M).

For the proof of Theorem 4 we consider the maximization problem

max
M(a)

J(M(·)), (C.1)

subject to

Mtot =
∫ ω

0
M(a) da, (C.2)

0 ≤M(a) ≤ M̄(a). (C.3)
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It holds that J(M(·)) =
∫ ω

0 F (a)M(a) da∫ ω
0 G(a)M(a) da , where functions F (a) and G(a) are

obtained by the Cauchy formula for equations (2.2), (2.3). This problem is
equivalent to the minimization problem (2.1)–(2.5). Note, that J(M(·)) =
1−D(M(·)). We now determine F (a) and G(a):

N(a) =l(a)N(0) +
∫ a

0

l(a)
l(s)M(s) ds, (C.4)

N(0) = 1
1−R

∫ ω

0
f(a)

∫ a

0

l(a)
l(s)M(s) ds da, (C.5)

= 1
1−R

∫ ω

0
M(s)v(s) ds. (C.6)

Taking the integral of equation (C.4) over the interval [0, ω] yields
∫ ω

0
N(a) da =

∫ ω

0

l(a)
1−R da

∫ ω

0
M(s)v(s) ds+

∫ ω

0

∫ a

0

l(a)
l(s)M(s) ds da,

=e[0,ω](0)
1−R

∫ ω

0
M(s)v(s) ds+

∫ ω

0
e[0,ω](s)M(s) ds,

=
∫ ω

0

(
e[0,ω](0)
1−R v(s) + e[0,ω](s)

)
M(s) ds,

=
∫ ω

0
G(s)M(s) ds,

where G(s) := e[0,ω](0)
1−R v(s) + e[0,ω](s). Analogously, we obtain

∫ β

α
N(a) da =

∫ ω

0
F (s)M(s) ds,

where F (s) := e[α,β](0)
1−R v(s) + e[α,β](s). Function F (s) can be interpreted as an

s-year-old immigrant’s effect on the age structure of the population. The first
term is then the contribution of all of her future native-born descendants to
the age group [α, β], (counting children, grandchildren and so forth) in the re-
sulting SI population and the second term may be viewed as the immigrant’s
own effect by being within the working age. The analogous interpretation
holds for the above function G(s) for the age interval ∈ [0, ω].

Furthermore, we assume that the following assumption holds:
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Regularity Assumption 1. For any c > 0 it holds that

F (a) 6= c G(a),

almost everywhere in [0, ω].

This assumption means that an immigrant’s effect on the working popu-
lation is not proportional to its effect on the overall population.

For the proof of Theorem 4 we need the following Lemma:

Lemma 2. For any immigration profile M(·) satisfying (2.5), (2.4) there
exists a set Γ ⊂ [0, ω], meas(Γ) > 0 such that M(a) > 0 for a ∈ Γ and

F (a)
G(a) < J(M(·)), ∀a ∈ Γ,

holds.

Assume that
F (a)
G(a) ≥

∫ ω
0 F (s)M(s) ds
∫ ω

0 G(s)M(s) ds, ∀a ∈ {s : M(s) > 0} =: Γ0, meas(Γ0) > 0.

Because of the regularity assumption the strict inequality

F (a)
∫ ω

0
G(a)M(a) da > G(a)

∫ ω

0
F (a)M(a) da,

holds on a subset Γ ⊂ Γ0 of positive measure. Multiplying both sides by
M(a) and integrating on [0, ω] we obtain
∫ ω

0
F (a)M(a) da

∫ ω

0
G(a)M(a) da >

∫ ω

0
G(a)M(a) da

∫ ω

0
F (a)M(a) da,

which gives a contradiction. �

Proof of Theorem 4: Let Γ be the set from Lemma 2, and let b ∈ Γ be a
Lebesgue point. Recall that almost every point of Γ is such. Let us define
an immigration profile M̃(·)

M̃(a) :=





M(a) a /∈ [b− δ, b] ∪ [ω − δ, ω],
M(a)− h a ∈ [b− δ, b],
M(a) + h a ∈ [ω − δ, ω],

29



where M(a) > 0 and 0 < h ≤ M̄(a) − M(a) holds. The corresponding
objective value reads as

J(M̃(·)) =
∫ ω

0 F (a)M(a) da− h
∫ b
b−δ F (a) da+ h

∫ ω
ω−δ F (a) da

∫ ω
0 G(a)M(a) da− h

∫ b
b−δ G(a) da+ h

∫ ω
ω−δ G(a) da

.

We define
H(δ) := h

∫ x

x−δ
F (a) da, x = b, ω,

where, by transformation of the independent variable, H(δ) = h
∫ δ

0 F (x−t) dt
holds. By Taylor expansion around 0 we obtain

H(δ;x) = h(H(0;x) + δH ′(0;x) + δ2H ′′(0;x) + o(δ2)),
= hδF (x) + hδ2F ′(x) + ho(δ2).

By o(δ2) we mean, that F ′′ grows slower than δ2. The same approach is
used for G. Therefore, by neglecting all terms but the linear one in δ,

J(M̃(·)) =
∫ ω
0 F (a)M(a) da− δhF (b) + δhF (ω)
∫ ω

0 G(a)M(a) da− δhG(b) + δhG(ω) .

Note, that G(ω) = F (ω) = 0 and therefore it holds that

J(M̃(·))− J(M(·)) > 0

⇔
∫ ω

0 F (a)M(a) da− δhF (b)
∫ ω

0 G(a)M(a) da− δhG(b) >
∫ ω
0 F (a)M(a) da
∫ ω
0 G(a)M(a) da

⇔ −F (b)
∫ ω

0
G(a)M(a) da > −G(b)

∫ ω

0
F (a)M(a) da

⇔ F (b)
G(b) <

∫ ω
0 F (a)M(a) da
∫ ω
0 G(a)M(a) da

which is fulfilled by the choice of b ∈ Γ as was proven in Lemma 2.
Since problem (2.1)–(2.5) and problem (B.3)–(2.4) and therefore J(M̃(·)) >

J(M(·)) and D(M̃(·)) < D(M(·)) are equivalent we have thus proven Theo-
rem 4. �
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Appendix D. Proof of Theorem 2

We consider problem (2.1)–(2.4) with the additional constraint (2.6).
Note, that minimizing the dependency ratio D in a population with fixed
size is equivalent to maximizing the number of working people

max
M(a)

∫ ω

0
I[α,β](a)N(a) da. (D.1)

Again, we define the Pontryagin function as

H(a,N,X, Y,M, ξ̃) =
ξ̃(−µ(a)N +M) + I[α,β](a)N − λ̃1f(a)N − λ̃2N, (D.2)

and aim to apply Pontryagin’s maximum principle presented in Appendix A.
The optimality conditions for (N∗,M∗) can be formulated by the following
expressions

ξ̃(a)M∗(a) = max
0≤M≤M̄(a)

H = max
0≤M≤M̄(a)

ξ̃(a)M(a), (D.3)

˙̃ξ(a) = µ(a)ξ̃(a)− λ̃1f(a) + I[α,β](a) + λ̃2, ξ̃(0) = λ̃1, ξ̃(ω) = 0, (D.4)

where λ̃1 should be calculated in such a way that (2.6) is satisfied for the
resulting optimal solution. �
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