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Abstract

The article studies a mixture model, proposed in Finkelstein and Esaulova (2006),
which generalizes many popular models, most notably proportional hazards and accel-
erated life. In this framework we derive that a crucial feature of the frailty distribution
is its regular variation at 0. Among the popular distributions to model unobserved
heterogeneity, the gamma, beta, Weibull, and truncated normal densities have this
property, as opposed to the inverse Gaussian and lognormal distributions.
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1 Introduction

General mixture models, introduced in Finkelstein and Esaulova (2006) and thoroughly
discussed in Finkelstein (2008), generalize many standard survival models, including the two
most widely used in demography, epidemiology, medicine, biology, and engineering – the
proportional hazards and the accelerated failure time models. In these settings two inverse
to one another problems are addressed: (i) given a family of mixing distributions, what is
the asymptotic behavior of the mixture failure rate, and (ii) given the asymptotic behavior
of the mixture hazard, what is the class of underlying mixing distributions. Functions of
regular variation at 0 play an important role in both cases.

Asymptotic behavior of the mixture failure rate is a key feature of mixture models. In
demography, for example, the observed leveling-off of the human force of mortality raises
questions regarding the underlying model and, in particular, the distribution of individual
frailty, a measure of unobserved heterogeneity. The problem, restricted to proportional haz-
ards settings, was studied in Steinsaltz and Wachter (2006). Assuming that the baseline
hazard is asymptotically equivalent to a Gompertz curve and the frailty (mixing) distribu-
tion behaves in a neighborhood of zero like a power function c zα, where c ≡ const and
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α > −1, the authors formulate and prove an Abelian theorem that the resulting mixture
(population) hazard rate is asymptotically flat. Inversely, assuming that the mixture hazard
rate is asymptotically flat and the underlying mortality distribution follows the Gompertz
(or asymptotically Gompertz as t → ∞) law, they described the set of frailty distributions
that could produce this leveling-off. Thus Steinsaltz and Wachter (2006) contains also a
Tauberian theorem for the proportional hazards model.

The same behavior of the mixing distribution for z → 0 was assumed also in Finkelstein
and Esaulova (2006), but for a more general survival model. The authors of Finkelstein
and Esaulova (2006) derive independently the asymptotic result in Steinsaltz and Wachter
(2006) and, moreover, prove that the mixture hazard rate for the accelerated failure time
model tends to zero with time, regardless of the baseline lifetime distribution. This implies
that if human mortality is asymptotically flat, then the underlying model is certainly not
accelerated failure time.

In this paper we, first, generalize the Abelian theorem of Finkelstein and Esaulova (2006)
for the wider class of frailty distributions with regularly varying densities. Second, given
the asymptotic behavior of the mixture hazard rate, we derive simple sufficient conditions
for the form of the corresponding distribution of frailty. These general results could hope-
fully contribute to the better understanding of oldest-old human mortality patterns like, for
example, the observed special case of asymptotically flat mortality.

2 Preliminaries

Let T ≥ 0 be a lifetime random variable characterized by a survival function S(t). Suppose
S(t) is conditioned by a random variable Z ≥ 0 (frailty) with a pdf π(z):

S(t, z) := P (T > t |Z = z) ≡ P (T > t | z),

where P (A) denotes the probability of event A.

Suppose the pdf f(t, z) = −S ′t(t, z) exists and denote the corresponding hazard rate by
µ(t, z):

µ(t, z) =
f(t, z)

S(t, z)
.

Then the mixture survival function, density and hazard will be

Sm(t) =

∞∫
0

S(t, z)π(z)dz, fm(t) =

∞∫
0

f(t, z)π(z)dz, µm(t) =
fm(t)

Sm(t)
,

respectively. Assume that the mixing distribution’s pdf π(z), z ≥ 0, belongs to the family
defined as

π(z) = zαπ1(z), (1)
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where α > −1, and the function π1(z) is (i) bounded in [0,+∞), (ii) continuous and non-
vanishing at z = 0. Assume, in addition, that the failure distribution is characterized by a
cumulative hazard

H(t, z) =

t∫
0

µ(x, z)dx = A(zφ(t)). (2)

where A(·) and φ(·) are differentiable and strictly increasing, i.e. lim
s→+∞

A(s) = +∞ and

lim
t→+∞

φ(t) = +∞. Model (2), defined at the level of the cumulative hazard rather than the

hazard rate itself, generalizes many standard models. For instance, when A(s) ≡ s and
φ(t) = H(t), it reduces to proportional hazards. If A(s) = H(s) and φ(t) ≡ t, then (2) is
equivalent to accelerated failure time. Note that, (2) can be trivially adjusted by an additive
term to account for additive hazards and related models (see Finkelstein (2008)).

Under weak assumptions (see Finkelstein and Esaulova (2006)) the mixture hazard µm(t)
has the following asymptotics

µm(t) ∼ (α + 1)
φ′(t)

φ(t)
t→∞, (3)

where a(t) ∼ b(t) denotes lim
t→∞

a(t)/b(t) = 1. Eq. (3) means that asymptotic behavior of

µm(t) depends only on α and the derivative of the logarithm of the scaling function φ(t).
Thus, for the Gompertz proportional hazards model

A(s) ≡ s , φ(t) = H(t) =
a

b
(ebt − 1) ,

the mixture failure rate tends to a constant:

µm(t) ∼ (α + 1)b ≡ const.

Note that, this result is true for any mortality distribution such that (see Steinsaltz and
Wachter (2006))

lim
t→∞

µ(t)

H(t)
= b.

We will refer further to such distributions as “Gompertz-like”.

In this paper we show, first, that the Abelian theorem proved in Finkelstein and Esaulova
(2006) holds not only for frailty densities (1), but also for any pdf that is a product of zα
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and a function of regular variation with power α larger than −1. Then, we prove the inverse
(Tauberian) result: given (3), we derive the corresponding class of mixing distributions.
We derive a simple sufficient condition for checking whether a mixing distribution belongs
to this family. Finally, we consider, as simple examples, a number of widely used frailty
distributions, among which the gamma, the log-normal, and the inverse Gaussian, and check
whether they are plausible in the sense of the Tauberian result.

3 Abelian Theorem for Densities of Regular Variation

We adopt the definitions in Feller (1971) for functions of slow and regular variation at 0 (see
also Bingham et al. (1989)).

Definition 1: A positive function G(t) defined on (0,∞) is slowly varying at 0 if

lim
t→0

G(kt)

G(t)
= 1.

for every fixed k > 0.

Definition 2: A positive function F (t) defined on (0,∞) is regularly varying at 0 with
power −∞ < p <∞, if

lim
t→0

F (t)

tpG(t)
= 1.

where G(t) is a slowly varying function at 0.

As far as we know, only a few papers relate these functions to mixture models. For example,
in the special case of a mixture of exponential distributions (see Abbring and van den Berg
(2007)) if “proportional frailty” Z is regularly varying at 0, then the random variable Zt
converges in distribution to the gamma distribution with parameters 1 and p (see also Block
and Joe (1997)). We will use the idea of regular variation for z → 0 to generalize the Abelian
theorem in Finkelstein and Esaulova (2006).

As asymptotic relationship (3) depends on the mixing distribution just in terms of its power
characteristic α in a neighborhood of zero, the definitions above suggest that (3) can be valid
for a wider than (1) class of mixing distributions with a pdf

π(z) = zαG(z) π1(z), (4)

where G(z) is a slowly varying at 0 function. In fact, instead of G(z) π1(z) we can assume,
in general, any regularly varying function with power α, but in view of Definition 2 and
relationship (1), we consider in this section frailty with density (4). The proof in Finkelstein
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and Esaulova (2006) can be generalized to account for the extra multiplicative term G(z).
Thus, the following extension to the Abelian theorem for the general mixture model (2)
holds:

Theorem 1. Let the cumulative hazard H(t, z) of a mixture failure model be given by (2)
and the pdf of frailty Z be

π(z) = zαG(z) π1(z),

where α > −1, G(z) is a slowly varying at 0 function, and π1(z), π1(0) 6= 0, is a bounded in
[0,∞) and continuous at z = 0 function.

Assume that

∞∫
0

e−A(s)sα ds <∞, (5)

and, in addition

lim
s→∞

A(s) =∞ and lim
t→∞

φ(t) =∞.

Then

µm(t) ∼ (α + 1)
φ′(t)

φ(t)
.

The gamma distribution satisfies (4), whereas (4) does not hold for the inverse Gaussian and
the log-normal.

4 Tauberian Results for the Mixture Failure Rate

Mixture models are not identifiable in the absence of covariates (see Elbers and Ridder
(1982)). Knowing the mixture distribution, we have to specify first, implicitly or explicitly,
the underlying failure distribution in order to describe the mixing distribution. We will
assume that the cumulative hazard rate for individuals with frailty Z = z is given by (2).
Then a class of frailty distributions that produce a mixture hazard rate with asymptotics
(3) is given by the following
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Theorem 2. Let the cumulative hazard rate H(t, z) be given by (2) and lim
t→∞

φ(t) = ∞,

lim
s→∞

A(s) =∞. Suppose that the mixture failure rate µm(t) satisfies

µm(t) ∼ c
φ′(t)

φ(t)
> 0 t→∞,

where c > 0.

Then the pdf π(z) of the mixing (frailty) distribution satisfies for z → 0

∞∫
0

e−A(z φ(t)) z π′(z) dz

∞∫
0

e−A(z φ(t)) π(z) dz

∼ c− 1. (6)

Condition (6) is given in asymptotic terms. As a result, it is difficult to describe explicitly
the class of admissible frailty distributions within the framework of model (2). Nevertheless,
it can be shown that certain functions of regular variation belong to this class. We will prove
first the following

Theorem 3. Suppose the assumptions of Theorem 2 hold and, in addition, the pdf π(z)
satisfies

lim
z→0

z π′(z)

π(z)
= c− 1 (7)

Then relationship (6) holds.

Assumption (7) provides a convenient criterion for checking the admissibility of π(z). The
following theorem simplifies this procedure even more.

Theorem 4. Let

1. π(z) be a regularly varying at 0 function defined as

π(z) = zc−1G(z) , (8)

where c > 0.

6



2. π′(z) be asymptotically monotone as z → 0.

Then relationship (7) holds.

The proofs of Theorems 1, 2, 3, and 4 can be found in Missov and Finkelstein (2011).

5 Examples of Mixing Distributions

In this section, for simple illustration, we will examine several popular mixing distributions
for modelling frailty – the gamma Vaupel et al. (1979), the log-normal McGilchrist and
Aisbett (1991), the inverse Gaussian Hougaard (1984), as well as the beta and the Weibull
distributions that are less commonly used. For each of them we will check whether its density
satisfies the sufficient condition (7) of Theorem 3. Thus, we can classify the distributions
mentioned above into two groups: “admissible” and “non-admissible” within the general
framework (2).

5.1 “Admissible” Frailty Distributions

The Gamma Distribution

The density of the gamma distribution

fΓ(z;λ, k) =
λk

Γ(k)
zk−1 e−λz

satisfies (7) for k = c. Indeed,

z π′(z) = π(z) (k − 1− λz)

and that is why

lim
z→0

z π′(z)

π(z)
= k − 1.

We can prove this also by checking the necessary conditions of Theorem 4: the gamma
density satisfies (8) with k = c, the function G(z) = λk e−λz/Γ(k) is slowly varying at 0, and
its derivative is asymptotically (z → 0) monotone.
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The Weibull Distribution

Although not frequently used as a frailty (but rather as a baseline failure) distribution, the
Weibull distribution with parameters a > 0 and b > 0 is also admissible in terms of (7). Its
density

π(z) = fWeibull(z; a, b) =
a

b

(z
b

)a−1

e−( z
b )

a

(9)

implies that

z π′(z) = π(z)
(
a− 1− a

ba
za
)

and, as a result,

lim
z→0

z π′(z)

π(z)
= a− 1

The Beta Distribution

The beta density is given by

π(z) = fBeta(z; a, b) =
za−1(1− z)b−1

B(a, b)
, (10)

where B(a, b) =
1∫
0

xa−1 (1− x)b−1 dx is the beta function. Taking advantage of

z π′(z) = π(z)

(
a− 1− b− 1

1− z
za
)
,

we can see that (7) is fulfilled for a = c. Alternatively, we can prove that the beta distribution
is admissible by applying Theorem 4.

The Truncated Normal Distribution

The truncated normal density is given by
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π(z) = ftN(z;µ, σ2, a, b) = e−
z2

2
1

σ
√

2π
(
Φ( b−µ

σ
− a−µ

σ
)
) , (11)

where Φ(x) is the cumulative distribution function of the standard normal distribution.
Taking advantage of

z π′(z) = −z2 π(z),

we can see that (7) is fulfilled for a = 1.

5.2 “Non-Admissible” Frailty Distributions

The Log-Normal Distribution

The log-normal distribution with a location parameter m ∈ R and a squared scale parameter
σ2 > 0, used in survival models among others in McGilchrist and Aisbett (1991), has a
density

π(z) = flogN(z;m,σ2) =
1

zσ
√

2π
exp

{
−(ln z −m)2

2σ2

}
,

which implies

z π′(z) = π(z)

(
−1− ln z −m

σ2

)
.

In this case (7) does not hold as lim
z→0

ln z = −∞. As a result, the log-normal distribution

cannot be picked up as a mixing distribution in the framework of (2).

The Inverse Gaussian Distribution

The inverse Gaussian distribution with parameters µ, λ > 0 has a pdf

π(z) = fInvGauss(z;µ, λ) =

√
λ

2πz3
exp

{
−λ(z − λ)2

2µ2z

}
,
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which yields

z π′(z) = π(z)

(
−3

2
− λ

2µ
z +

λ3

2µz

)
.

Due to the last term in the parentheses, which tends to infinity as z → 0, (7) does not hold.
Therefore, the inverse Gaussian distribution is also excluded from the class of plausible
distributions for the general model (2).

6 Conclusion

This paper aims at answering the question what distributions we may use for frailty if
mortality has certain asymptotic behavior (see Missov and Finkelstein (2011)). We study
a general mixture model, proposed by Finkelstein and Esaulova (2006), which includes as
special cases the proportional hazards and the accelerated failure time models. The latter
cannot produce a plateau as its mixture hazard rate tends to zero. In the case of proportional
hazards, the mortality distribution is ”Gompertz-like” and the frailty distribution is given
either as in Steinsaltz and Wachter (2006), or by (6). If the model is not proportional
hazards, then we can still classify the plausible mixing distributions by (6) or (7). Theorem
4 offers a suitable sufficient condition for checking whether a distribution belongs to a subset
of the “plausible” class. Among the popular distributions used to describe frailty, the ones
that satisfy (6) are the gamma, beta, and Weibull distribution.
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