
Analytical Solutions and Approximations

to Gompertz-Makeham Life Expectancies

Abstract

We study the Gompertz and Gompertz-Makeham mortality models. We prove that the
resulting life expectancy can be expressed in terms of a hypergeometric function if the
population is heterogeneous with gamma-distributed individual frailty, or an incom-
plete gamma function if the study population is homogeneous. We use the properties
of hypergeometric and incomplete gamma functions to construct approximations that
allow calculating the respective life expectancy with high accuracy and interpreting
the impact of model parameters on life expectancy.

Introduction

Parametric models of human mortality date back to Gompertz (1825) and his perception of
mortality rates that grow exponentially with age. Makeham’s contribution (Makeham 1860)
consists in the addition of an age-independant constant that, on the one hand, accounts for
mortality that is not related to aging and, on the other hand, introduces an additional third
parameter that improves the model fit.

In human populations, the observed overestimation of the Gompertz-Makeham model at ages
above 80 demanded the study of models that account for unobserved heterogeneity (Beard
1959). Vaupel et al. (1979) introduced a random variable, called frailty, that modulates
individual lifetimes. The resulting mixture of two distributions, one for the general mortality
schedule and one for frailty, describes the process at population level. The simplest model
(Vaupel et al. 1979) that accurately captures the observed mortality dynamics (Missov and
Vaupel 2011) is the Gamma-Gompertz (or Gamma-Gompertz-Makeham) model. Within its
framework individual frailty Z is described by a p.d.f.

π(z) =
λk

Γ(k)
zk−1 e−λz, k, λ > 0

In the simplest model settings frailty is considered to be time-constant, i.e. individuals are
born with a certain frailty that remains the same throughout their life. The force of mortality
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and the survival function of an individual with frailty Z = z at age x in year y is given,
respectively, by

µ(x, y | z) = z a(y)ebx + c(y) · 1c(y)6=0 (1)

and

s(x, y | z) = exp

{
−z a(y)

b

(
ebx − 1

)
− c(y)x · 1c(y)6=0

}
, (2)

where a(y) > 0 is the initial level of mortality, b > 0 is the rate of aging, and c(y) ≥ 0
stands for the level of age-independent extrinsic mortality (Kirkwood 1985). When c(y) = 0,
µ(x, y | z) follows a Gompertz curve. Otherwise µ(x, y | z) has a Gompertz-Makeham shape.
In our notation we will not further specify the indicator function 1c(y)6=0, assuming c(y), if
present in the formulae, non-zero.

The distribution of lifetimes in a Gamma-Gompertz mixture model is, thus, described by a
survival function

s(x, y) =

∞∫
0

s(x, y | z) π(z)dz = e−c(y)x
(

1 +
a

bλ
(ebx − 1)

)−k
(3)

Consequently (remaining) life expectancy at age x in year y can be calculated as

e(x, y) =

∞∫
x

e−c(y)t
(

1 +
a

bλ
(ebt − 1)

)−k
dt (4)

The Gompertz(-Makeham) force of mortality µ(x, y | 1) is widely used to describe the mortal-
ity patterns of not only humans, but also many other animal species (Gavrilov and Gavrilova
1991; Promislow 1991; Golubev 2004; Teriokhin et al. 2004; Bronikowski et al. 2011). A mod-
ification of the Gompertz(-Makeham) model, the Logistic or Logistic-Makeham (Pletcher
1999)

µ(x) =
aebx

1 + a
b
κ (ebx − 1)

+ c, a > 0,κ ≥ 0, (5)

is often found to provide a better fit by accounting for the deceleration of mortality, captured
by parameter κ, at the highest ages (Gotthard et al. 2000; Tu et al. 2002; Fox et al. 2003;
Rueppell et al. 2007; Terzibasi et al. 2007).
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One way to think about (5) is that the population is homogeneous, and all of the individuals
experience the same logistic hazard of death. However, incorporating the idea of hetero-
geneity, we could interpret (5) as it follows: individual hazard rises exponentially with age,
but some individuals are more robust than others and their exponential increases start from
different levels. The Logistic-Makeham model is by its parametrization the same as the (het-
erogeneous) Gamma-Gompertz-Makeham model (Vaupel and Yashin 1985), where different
individuals have different levels of frailty and the same exposure to external mortality.

In this article we focus on remaining life expectancy e(x, y) at age x in the Gamma-Gompertz-
Makeham model settings and address three questions: i) can we represent e(x, y) and, in
particular, life expectancy at birth e(0, y) in an analytical form, ii) if yes, what insight does it
give about life expectancy dynamics with respect to the model parameters a(y), b, c(y), k, λ;
iii) would it be possible to derive simple approximations that capture this dependence, on
the one hand, and do not destroy the accuracy of approximation, on the other?

Gamma-Gompertz(-Makeham) e(x, y) and Its Approximations

Analytical Solution for e(x, y)

Suppose the force of mortality and the survival function of a population are given by (1)
and (2), respectively. Then remaining life expectancy at age x in year y is given by (4).
Following the idea in the proof of Missov (2010), it can be derived (see Appendix ??) that

e(x, y) =

(
bλ
a(y)

e−bx
)k

e−cx

bk + c(y)

(
1−

(
1− bλ

a(y)

)
e−bx

)−k

2F1

k, 1; k + 1 +
c(y)

b
;

(
1− bλ

a(y)

)
e−bx(

1− bλ
a(y)

)
e−bx − 1

 ,

(6)

where 2F1(α, β; γ; z) is the Gaussian hypergeometric function, i.e.

2F1(α, β; γ; z) =
∞∑
j=0

(α)j (β)j
(γj)

zj

j!
, (7)

which is defined for γ > β > 0 (see, for example, Bailey 1935); (m)n = m(m+1) . . . (m+n−1)
denotes the Pochhammer symbol.

Eq. (6) reduces for x = 0 to the Gamma-Gompertz-Makeham life expectancy at birth

e(0, y) =
1

bk + c(y)
2F1

(
k; 1; k + 1; 1− a(y)

bλ

)
, (8)
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which is equal to the expression for Gamma-Gompertz life expectancy, derived by Missov
(2010), for c(y) = 0.

Approximations for e(x, y)

First, we will use a linear transformation of the hypergeometric function and some of its

properties (Abramowitz and Stegun 1965:15.3.4,15.3.8,15.1.8), i.e. for z = e−bx
(

1− bλ
a(y)

)
we have

2F1

(
k; k +

c(y)

b
; 1 + k +

c(y)

b
; z

)
=(1− z)−k

(
bk

c(y)
+ 1

)
2F1

(
k, 1, 1− c(y)

b
,

1

1− z

)
+

+ (−z)−k−
c(y)
b

Γ
(

1 + k + c(y)
b

)
Γ
(
− c(y)

b

)
Γ(k)

.

(9)
The z-argument of the hypergeometric function in the first additive term on the right-hand
side of (9) approaches 0 (for the given human-mortality parameter values above). This
implies that the general term of the series (7) will tend to 0 and we can use the first two
terms of the hypergeometric series on the right-hand side of (9) as its approximation:

2F1

(
k; k +

c(y)

b
; k + 1 +

c(y)

b
; z

)
≈(1− z)−k

(
bk

c(y)
+ 1

)(
1 +

k

1− c(y)
b

1

1− z

)
+

+ (−z)−k−
c(y)
b

Γ
(
k + 1 + c(y)

b

)
Γ
(
− c(y)

b

)
Γ(k)

.

As a result, the corresponding approximation for e(x, y), which contains also the multiplica-

tive terms in the right-hand side of (8), for z = e−bx
(

1− bλ
a(y)

)
will be given by:

e(x, y) ≈

(
bλ
a(y)

e−bx
)k

e−cx

bk + c(y)

[
(1− z)−k

(
bk

c(y)
+ 1

)(
1 +

k

1− c(y)
b

1

1− z

)

+(−z)−k−
c(y)
b

Γ
(
k + 1 + c(y)

b

)
Γ
(
− c(y)

b

)
Γ(k)

 (10)

or when a(y) is close to 0 and (1− z) ≈ (−z) and also 1/(1− z) ≈ 0,
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e(x, y) ≈

[(
1− a

bk

)
e

c(y)
k
x
]−k

bk + c(y)

( bk

c(y)
+ 1

)
+ (−z)−

c(y)
b

Γ
(

1 + k + c(y)
b

)
Γ
(
− c(y)

b

)
Γ(k)

 (11)

Example

In order to illustrate the accuracy of approximation, we fitted a Gamma-Gompertz-Makeham
force of mortality to the 2007 United States data, the 2009 Japan data, the 2009 Germany
data, and the 2010 Sweden data (ages 30 to 110) with Poisson likelihood estimation. The
resulting parameter estimates are presented in the following table:

Sweden 2010 Germany 2009 Japan 2009 USA 2007

â30 8.68E-05 1.65E-04 1.45E-04 3.49E-04

b̂ 0.127 0.117 0.112 0.101
γ̂ 0.100 0.097 0.093 0.110
ĉ 0.0005 0.0007 0.0006 0.0010

Table 1: Gamma-Gompertz-Makeham parameter estimates

γ = k/λ2 denotes the variance of the gamma distribution. Using (6) for the exact result,
(10) for the approximate value, and (11) for a cruder approximation, we get the following
life-expectancy values

Sweden 2010 Germany 2009 Japan 2009 USA 2007

exact 52.380 50.824 53.825 49.697
approx1 52.379 50.823 53.824 49.691
approx2 52.375 50.812 53.814 49.663

Table 2: Exact and approximate values for remaining Gamma-Gompertz-Makeham life ex-
pectancy at age 30

Gompertz(-Makeham) Life Expectancy and Its Approximations

In this section we derive an analytical solution for life expectancy in a homogeneous popula-
tion, assuming that the individual force of mortality follows the Gompertz(-Makeham) law,
i.e. µ(x, y | 1) (see eq. 1).
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The Gompertz-Makeham Life Expectancy and Its Approximation

Life expectancy at age x in year y can be given explicitly by

eGM(x, y) =
1

b
e

a(y)
b

(
a(y)

b

) c(y)
b

Γ

(
−c(y)

b
,
a(y)

b
ebx
)
, (12)

where Γ(s, z) =
∞∫
z

ts−1e−tdt denotes the upper incomplete gamma function (see ?? in Ap-

pendix).

If a is close to 0, eGM(0, y), can be approximated by

eGM(0, y) =
1

c
−
(
a
b
eγ−1

) c
b

c(1− c
b
)
, (13)

where γ ≈ 0.57722 is the Euler-Mascheroni constant.

For credible extreme values of human mortality, 0 < a(y)
b
ebx ≤ 1 and 0 < c(y)

b
≤ 0.1,

Γ
(
− c(y)

b
, a(y)

b
ebx
)

can be approximated by (see ?? in Appendix)

Γ(s, z) =
1

s+ s2
exp

{
(1− γ)s+ 0.3225s2

}
−
∞∑
k=0

(−1)k
zs+k

k!(s+ k)
, (14)

where ζ(n) =
∞∑
k=1

k−n is the Riemann zeta function and 0.3225 ≈ ζ(2)−1
2

. The closer the

z-argument of the upper incomplete gamma function to 0 is, i.e. at younger ages, the less

terms of
∞∑
k=0

(−1)k+1zs+k

k!(s+k)
we need to use. The number of terms m, which have to be taken in

the latter series into account to achieve a desired accuracy ε, can be determined by

zs+m+1

(m+ 1)!(s+m+ 1)
≤ ε .

Example

Fitting a Gompertz-Makeham model by Poisson maximum likelihood for the 2007 United
States data (ages 30 and above), we get the following parameter values: â30 = 0.00046,
b̂ = 0.094 and ĉ = 0.0007. If we want to measure remaining life expectancy at age 30, by
calculating ŝ = −0.0074 and ẑ = 0.0049 from the fitted parameters and setting the error of
approximation to the sum by ε = 0.001,
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0.0049−0.0074+m+1

(m+ 1)!(−0.0074 +m+ 1)
≤ 0.001

solving this inequality for m gives, m = 0.24 or rounding up to the first integer as only
integers are allowed for k in (14), yields m = 1. Similarly, when the Makeham term is close
to zero, in the exponential part of (14) the second, ζ(n) zeta function term can be left out
of the approximation. In this case, it would cause an approximation error of 0.0014. Adding
the two errors together, by using

Γ(s, z) =
e(1−γ)s

s+ s2
− zs

s
+

zs+1

s+ 1
(15)

instead of Eq. 14 approximates Γ(s, z) with an error of less than 0.0024.

Finally, calculating the remaining life expectancy at age 30 for the United States in 2007,
Japan and Germany and 2009, as well as Sweden 2010 by Eq. 12, and by substituting Eq.
15 in Eq. 12 gives

Sweden 2010 Germany 2009 Japan 2009 USA 2007

exact 51.69 49.97 52.91 48.42
approx 51.70 49.99 52.92 48.44

Table 3: Exact and approximate values for remaining Gompertz-Makeham life expectancy
at age 30

respectively. Please note that the approximation error of (15) is inflated by the multiplicative
terms preceding the upper incomplete gamma function in (12) leading to the error of not
more than 0.02.

Gompertz Life Expectancy and Its Approximation

Without the Makeham term, for the proportionally changing Gompertz force of mortality
used by Vaupel (1986)

µG(x, y) = a(y)ebx ,

Missov and Lenart (2011) showed that the corresponding life expectancy of age x in year y
can be solved as
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eG(x, y) =
1

b
e

a(y)
b E1

(
a(y)

b
ebx
)
,

where E1(z) =
∞∫
z

e−t

t
dt denotes the exponential integral. Note that

E1(z) = lim
s→0

∞∫
z

ts−1 e−tdt = lim
s→0

Γ(s, z) ,

i.e. eG(x, y) is a degenerate form of eGM(x, y) when the Makeham term equals 0.

As (Abramowitz and Stegun 1965:5.1.11)

E1(t) = −γ − ln t−
∞∑
n=1

(−1)n tn

n · n!
,

if t = a(y)
b
ebx is close to 0, then eG(x, y) can be approximated by

eG(x) ≈ 1

b
e

a(y)
b

(
−γ − ln

a(y)

b

)
. (16)

Connecting Eq. 15 to Eq. 16, i.e. when c(y) = 0, we get that

Γ

(
0,
a(y)

b
ebx
)

= lim
s→0

{
e(1−γ)s

s+ s2
− zs

s
+ . . .

}
= lim

s→0

{
e(1−γ)s − zs(1 + s)

s+ s2
+ . . .

}
Applying l’Hôpital’s rule, gives

Γ

(
0,
a(y)

b
ebx
)

= lim
s→0

{
(1− γ)e(1−γ)s − (1 + s)zs ln z − zs

1 + 2s
+ . . .

}
= −γ − ln z + . . . . (17)

Substituting back Eq. 17 to Eq. 12 shows that Eq. 15 leads to the same result as the
Gompertz approximation when c(y) = 0.

Elasticities

In this section we calculate the elasticities of life expectancy with respect to the Gompertz-
Makeham parameters, i.e. the ratio of the relative change in life expectancy to the relative
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change in a, b, and c. We use the definition of elasticity in economics, i.e. the elasticity Ey,x
of y with respect to x is given by

Ey,x =
∂y

∂x
· x
y

Calculating the elasticities of Eq. 13 gives

EeGM ,a =

(
a
b
eγ−1

) c
b

1 + b
c

[(
a
b
eγ−1

) c
b − 1

]
with respect to a.

EeGM ,b =

(
a
b
eγ−1

) c
b
[
c− 2b+ (c− b) ln

(
a
b
eγ−1

)]
( b
c
− 1)

[
c+ b

((
a
b
eγ−1

) c
b − 1

)]
with respect to b.

EeGM ,c =
c2 + b2 − 2bc+

(
a
b
eγ−1

) c
b
[
−b2 + 2bc+ c(b− c) ln

(
a
b
eγ−1

)]
(b− c)

[
c+ b

((
a
b
eγ−1

) c
b − 1

)]
with respect to c.

Substituting a = 0.00002, b = 0.1 and c = 0.0007 in the equations above for modern societies
and a = 0.000004, b = 0.125, c = 0.011 for hunter-gatherers (Gurven and Kaplan 2007) show
that life expectancy is highly inelastic to small changes in a or c and more sensitive to changes
in b.

Elasticity of Modern society Hunter-gatherer

a -0.12 -0.07
b -0.85 -0.575
c -0.028 -0.355
k -0.13
λ 0
k∗ -0.01

Table 4: Elasticities of Gompertz-Makeham parameters
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That is, in case of modern societies, a 10% increase in a would decrease the life expectancy
by 1.2%, a 10% increase in b would decrease the life expectancy by 8.5% and a 10% increase
in c would decrease life expectancy by 0.03%. Increasing shape parameter of the distribution
of heterogeneity decreases the proportion of lower frailty individuals and in accordance with
it, the elasticities show that if k increases by 10%, life expectancy would decrease by 1.3%.
Note that in this case, the average frailty of the population would increase. An increase
in the λ, the scale parameter of the frailty distribution would have 0 or very mild positive
effect on life expectancy as it decreases the mean frailty. We denoted by k∗ the situation
when k = λ and the mean frailty therefore equals to 1. In this case, an increase in k∗ would
only mean that the heterogeneity of the population decreases and the mean of it stays the
same. As the population is getting more homogeneous (with the same mean frailty value),
the life expectancy of the population mildly decreases, a 10% increase in k∗ would decrease
life expectancy by 0.1%. However, please note that the elasticities are not constant; for a
higher value of a or c, life expectancy can be more elastic as the case of the hunter-gatherers
show.

A simpler representation of the analytic forms of the elasticities is possible by approximating
them by Chebyshev polynomials of the first kind. A second degree polynomial approximation
shows the sensitivity of the elasticities to changes in c (Table 5). Substituting a value for
c or a in these formulas gives the elasticity of life expectancy with respect to any of its
parameters. For example, looking at the row of b, we can see that if c increases, a change in
b loses its importance in determining the life expectancy. Nevertheless, for c ≈ 0, a change
in the rate of aging would have the largest impact on life expectancy.

Elasticity in terms of c

w.r.t homogeneous heterogeneous

a −0.12 + 5c− 5.62c2 −0.13 + 5c− 5.6c2

b −0.88 + 45.65c− 48.07c2 −0.87 + 58.22c− 66.07c2

c −47.65c+ 53.69c2 −63.22c+ 71.67c2

k −0.14 + 5.22c− 5.84c2

λ 0.87c− c2
k∗ −0.01 + 0.22c− 0.24c2

Table 5: Elasticities of Gompertz-Makeham parameters as Chebyshev polynomials
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