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Abstract

The recent availability of survey data on social contacts (e.g., Polymod)

has strongly improved our understanding of the social determinants of the

spread of close-contact infections. However, little is known about the rela-

tionship between two critical factors that explain the transmission of infec-

tions: frequency of contacts and duration of exposure. Using classic results

from probability theory, this paper combines these two factors by obtaining

a new relevant epidemiological quantity: the number of “suitable” contacts

(i.e., contacts that involve a sufficiently long time of exposure to allow trans-

mission). Model parameters, estimated against serological data, regulate the

length of the minimal duration of exposure for a suitable contact. A wide

range of age-specific matrices of suitable contacts can be derived to infer

the level of transmissibility for different infections. The model has been

tested using data on time use, number of contacts, and seroprevalence for

varicella in Italy. The results show that the minimal duration of exposure

for transmission of varicella is very small, confirming that varicella is highly

transmissible. The proposed approach shows the relative importance of

number of contacts versus time of exposure. This is relevant to design pub-

lic health interventions, whose outcome critically depends on social contact

patterns.

Keywords: Time use data; Contact data; Varicella Zoster Virus; Bayesian

Melding.

Abbreviations: TUD, Time Use Data; TU, Time Use; VZV, Varicella

Zoster Virus; NGM, Next Generation Matrix; MSD, Minimal Suitable Du-

ration; SIR, Susceptible Infective Removed.
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Social contact patterns are the key factors underlying the spread of close-

contact infectious diseases, like measles or varicella [1, 2]. Early approaches to

measure social contacts were indirect [3]. Matrices of transmission rates (e.g., the

Who-Acquires-Infection-From-Whom matrices [1] and the proportionate-preferred

matrices [4]) were based on theoretical hypotheses about social mixing patterns.

Even though the indirect approach has been very influential [3, 5, 6, 7, 8, 9, 10,

11, 12, 13, 14], it has an important limitation: model results are highly sensitive

to the assumed mixing structures.

Recently, three main approaches to measure contacts directly from social data

have been proposed [15, 16, 17]. These approaches produce estimated matrices

whose entries represent the average number of contacts or time of exposure that

individuals in age group i have with individuals in age group j, per unit of time.

A first approach relies on contact surveys in which the respondent self reports the

number of contacts she/he had during a randomly sampled day (and additional

information: age of contacted persons, type of contact, etc.) [15, 18, 19, 20, 21].

A second approach relies on Time Use Data (TUD): time of exposure matrices

are estimated from time use (TU) diaries, assuming that simple mixing rules (e.g.,

proportionate mixing) hold at the level of single locations and for short time slots

[16]. In a third approach, contact matrices are estimated from the simulation

outputs of individual-based models, appropriately calibrated to socio-demographic

and TUD [17, 22], to generate the underlying contact network structure of the

population.

TUD and contact surveys have been used independently to model two different

dimensions of the transmission process. How can we integrate the two sources of

information into a unified model? What is the role of number of contacts versus
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duration of exposure? Is it specific to infections, or groups of infections? This

article addresses these and related questions. We propose a novel methodology,

based on the so-called “occupancy problem”, to combine the two data sources. In

our approach, contacts “suitable for transmission” are the ones which are expected

to last long enough to include an infectious event. Our method is very powerful

and flexible since it can model a large family of contact matrices, possibly reflect-

ing different degrees of infection transmissibility. We show an application to an

epidemiological model for varicella.

MATERIALS AND METHODS

Data

As part of the European Sero-Epidemiology Network (ESEN2) [23] and Polymod

project [21], Italian serological data were collected and tested for antibodies to

varicella zoster virus (VZV) infection (sample size: 2,517; age-range: 0-79 years;

date 1997-2003). Given that no mass vaccination program for VZV was in place in

Italy at the time, the serological data describe the natural history of the infection.

TUD were collected by the Italian National Statistical Agency (ISTAT) in 2002-

2003 on a sample of about 24 thousand households. Each respondent reported in

a diary all the activities that she/he did during a randomly assigned day, as well

as the locations where the activities took place.

Contact data for Italy were collected in 2006 as part of the Polymod project

[21]. Respondents (n=849) were asked to report the number of different people

they had contact with during a randomly assigned day, demographic information,
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characteristics of the contacts (i.e., age, gender, location, frequency) and whether

the contact was physical or non-physical.

We used data for Italy, the only country for which we have a full combination

of the three relevant data sources: a Time Use study covering young children (≥

3 years), a social contacts survey, and serological data for close-contact infections.

Suitable contact matrices

Contact matrices, C, have elements cij representing the average number of con-

tacts (per unit of time, e.g. per day) that individuals in age group i have with

individuals in age group j [15, 17, 21, 22]. Duration of exposure matrices, E, have

elements eij which represent the average time (e.g., in minutes) that individuals

in age group i are ‘exposed’ to individuals in age group j [16]. We propose a novel

measure of contacts that we summarize in matrices of “suitable contacts”. In our

approach, a contact is “suitable” when, under the assumption that transmissibility

cumulates over the duration of a contact, the underlying duration of exposure is

sufficiently long to allow for transmission of the infection. We evaluate suitable

contacts from TUD and contact surveys using a probabilistic result from the “oc-

cupancy problem”, that is the problem of computing the probability that a number

of given boxes receive at least one ball, when a fixed number of balls are randomly

assigned to these boxes (see the Appendix for details). We assume that duration

of exposure between age groups is randomly allocated to the respective number

of contacts in “discrete packages” (analogously to balls and boxes), and that each

infection is characterized by a minimal duration “package” that is necessary for

transmission: a “minimal suitable duration” (MSD). Essentially, given indepen-
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dent information on average number of contacts and average duration of contacts,

we want to compute the expected value of the number of contacts that last longer

than a minimal threshold for transmission. For example, consider an infection for

which one minute is the MSD, and assume that age groups i and j are exposed

to each other, eij, for 20 minutes/day, and have an average number of contacts

cij of 10/day. The average duration of contacts, eij/cij, is two minutes. However,

if the 20 minutes are randomly allocated to contacts, there is also a quite large

(binomial) probability (more than 12%) that a contact lasts less than a minute,

therefore being “not suitable” for infection transmission.

Now consider contacts and exposure over longer time periods, under the as-

sumption that the average duration per contact eij/cij remains constant over time.

Let uij be a random variable representing the number of suitable contacts between

age groups i and j. The expected number of suitable contacts ūij = E(uij) is given

by the product of the average number of contacts cij and the proportion of these

contacts that are suitable for transmission (1− exp(eij/cij)). The larger the aver-

age duration of contacts eij/cij, the larger the proportion of contacts suitable for

transmission. In our previous example, the proportion of suitable contacts would

be (1 − exp(−2)), i.e. about 86%. The average number of suitable contacts ūij

is smaller than the average number of contacts cij as some contacts may not last

long enough and therefore are “not suitable for transmission”.

In principle, if the MSD were known for different infections, we could compute

suitable contact matrices U for any close-contact infectious disease. However, this

information is generally not available and needs to be estimated or assumed. Our

approach shows how the shape of a suitable contact matrix, or assortativeness in

contacts, varies as the minimal (infection-specific) duration varies. Consider, for
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example, a disease with a lower level of transmissibility than before, say 2 minutes

instead of 1 as MSD. Then we would have a smaller proportion of suitable contacts,

given by (1 − exp(−10/10)), i.e. about 63%. The impact of changes in MSD on

the overall shapes of the suitable contact matrix depends on the overall shape of

both E and C matrices. However, it can be shown that, for standard situations,

less transmissible infections have a less assortative suitable matrix U , than their

original contact matrix C.

In our empirical analysis we estimate the fraction q2 of total exposure time

between age groups which is suitable for transmission, by expressing the expected

number of suitable contacts as ūij = cij(1 − exp(−q2eij/cij)). The resulting

suitable matrix is validated against observed seroprevalence data by computing

the respective predicted values using an age-structured SIR (Susceptible-Infective-

Removed) model at endemic equilibrium and under the social contact hypothesis

[13, 15, 17, 24]. The latter assumes that age-specific transmission is proportional

to the number of suitable contacts through a single disease-specific (here assumed

age-independent) parameter q1 : kij = q1 × ūij.

The elements of the next generation matrix (NGM) [15, 25] are obtained as

the product of kij and duration of infectiousness d (which is about 7 days for

varicella): NGMij = q1× ūij×d. We call this transmission model the basic model.

The parameters q1 and q2 can be interpreted as ‘level’ and ‘shape’ parameters,

respectively. High values of q2 give little importance to the exposure matrix and

more importance to the contact matrix. The level parameter q1 rescales the overall

structure of suitable contacts to account for infection transmissibility that is not

age-specific (both susceptibility and infectivity).

Our approach could be extended in several directions. For example, the im-
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portance of different types of contacts for disease transmission can be evalu-

ated by stratifying the contact matrix C by the level of intimacy of contacts,

C = C1 + C2 where C1 is the physical contacts matrix and C2 the non-physical

one [24, 26]. Since this information (i.e., proximity of contacts) is not available

in the TUD, a simplified transmission model, called intimacy model, was consid-

ered here for illustrative purposes whereby exposure durations were assigned to

contacts independently of the level of intimacy of contacts (eij/cij). We obtain

kij = (q1,p × cij,p + q1,np × cij,np) × ūij, where q1,p and q1,np correspond to the

disease-specific parameters for, respectively, physical and non-physical contacts.

Statistical inference on transmission parameters

A second important contribution of this article is the application of state-of-the-art

Bayesian techniques to evaluate parameter uncertainty and to incorporate prior

epidemiological knowledge. The standard approach of estimating transmission

parameters by fitting an age-structured SIR model at equilibrium based on the

chosen contact matrix via maximum-likelihood, to cross-sectional unlinked data

(contact and serological data) has been widely used in recent years [for extensive

discussion see: 16, 17, 24, 26, 27, 28, 29]. In this article, we apply a novel approach,

known as Bayesian melding [30, 31], developed to make statistical inference for

models, as the standard age-structured SIR model, that transforms a vector of

input parameters (e.g., θ) into a set of outputs (e.g., ρ: seroprofiles and R0) in

a deterministic way: ρ = M(θ). In our specific case, the vector θ of unknown

parameters is, for the basic model θ = (q1, q2), and for the intimacy model θ =

(q1,p, q1,np, q2).
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We translate our epidemiological knowledge into probabilistic statements by

expressing a prior distribution for the Basic Reproductive Number (R0) of the

infection considered. R0 is an output of our SIR model and the most important

summary measure of infection transmissibility [1]. A large set of estimates and

expert opinions for R0 are available for many infections. Therefore, R0 is a natural

candidate for us to express a priori knowledge. In mathematical terms, R0 is the

dominant eigenvalue of the NGM [25, 32]. It follows that inputs and outputs in

our model are linked through the deterministic function R0 = M(θ), that maps

the vector of unknown parameters into the dominant eigenvalue of the underlying

NGM . A prior distribution on the outputs implicitly defines a prior distribution

on the inputs [30], conditional on time of exposure and contact matrices. The

implicitly defined prior is the so-called induced prior distribution: p∗(θ).

From the serological data (W ) we compute the binomial likelihood, p(W |M(θ)),

i.e. the probability of the data conditional on the model input θ, given by:

L(θ) =
N∏

i=1

p(W |M(θ)) ∝
N∏

i=1

π(ai)
yi(1− π(ai))

(ni−yi)

where i = 1, .., N (N = 79) denotes the ith year of age; ni is the corresponding

serological sample size; yi is the observed number of seropositive, and π(ai) is the

prevalence predicted by the model for age group i. Infants younger than 1 year

old are not considered because assumed to be protected by maternal antibodies.

The posterior distribution for the parameters of interest is obtained by com-

bining priors and likelihoods using the Bayes rule:

p(θ|W ) ∝ p∗(θ)p(W |M(θ))
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We use the Sampling-Importance-Resampling algorithm to compute the posterior

distributions of the input parameters [33, 34]. For each model specification (basic

and intimacy), we use uniform distributions for direct priors of input and output

parameters (qs, R0). In particular, varicella R0 is assumed to vary between 1 and

8 [24, 26]. Posterior Bayes factors, which are the standard goodness of fit measures

for these Bayesian approaches [35] are used to compare different model fits.

RESULTS

Suitable contact matrices

By considering different values of the MSD, which we assume to be a proxy for in-

fection transmissibility, our approach allows for an entire family of suitable contact

matrices.

Figure 1 illustrates the main differences between three suitable matrices ob-

tained by combining the TU baseline matrix (measured in minutes) with the

Polymod matrix, under the assumption of an MSD of, respectively, 1, 10 and

20 minutes. In particular Figure 1(a) reports mean numbers of contacts along

the main diagonals of the three suitable matrices considered, showing a massive

decline in children’s contacts (i.e. age groups 0-14), which are up to six times less

as the MSD increases from 1 to 20 min, whereas older age groups are much less

penalized. Figure 1(b),(c),(d) reports contacts of children aged respectively 0-4,

5-9, and 10-14, i.e. the groups mostly contributing to transmission, with other

age groups. Again the stronger decline (still up to a factor six) regards contacts

with other children age groups, while contacts with older individuals are much less
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affected. Overall these effects sharply reduces the matrix assortativeness.

The simplest summary measure of this decline in the role of children in trans-

mission is represented by the dominant eigenvalue of the contact matrices, i.e. the

Basic Reproduction Number that would be observed under the social contact hy-

pothesis sub a 100% probability of transmission per single contact [15]. It happens

that as the MSD passes from 1 to 10 to 20 min, the dominant eigenvalue declines

from 21.9 (very close to the figure of the Polymod matrix, given by 22.1) to 16.1

and to 12.5, suggesting a substantial decline in the overall transmissibility.

Fitting suitable matrices to data

Our basic model, based on the combination of contact and TU matrices, fits ob-

served varicella serological profiles rather well (see Table 2). The fit is very similar

to the one obtained using the Polymod contact matrix (Posterior Bayes Factor

of 239.688 vs. 238.927), which is known to perform extremely well for varicella

[17, 24, 26]. This result suggests that the concept of suitable contact is valuable,

especially because it provides additional insights on the determinants of infection

transmission.

The estimated posterior modes and credible intervals for q1, q2, and R0 are

reported in Table 2, and a comparison with the estimate of the q parameter for

the Polymod baseline model is shown. The proportion q2 of exposure that is

suitable for transmission is around 26% (9.6%-94.1%) assuming that the MSD for

varicella is one minute.

Prior and posterior distributions for parameters q1, q2, and R0 are shown in

Figure 2. Non informative uniform priors (solid lines) have been assumed. It is
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worth noting that the posterior of q2 shows a certain degree of skewness, whereas

the ones for q1 and R0 are much more symmetric around their mean value of,

respectively, 0.032 and 4.522.

In Figure 3, the appropriateness of the combined Polymod baseline and TU

baseline fitting model to reproduce the observed serological data is shown: the

estimated age-specific force of infection is high at around the ages of 5-6 and 40

years, and relatively low for other age groups [as in previous works: 24, 36].

The results of the intimacy model are reported in Table 2, for comparison with

the model based on Polymod data only (Polymod baseline) [26, 27]. The poste-

rior mode for q1,p, is larger than the corresponding mode of q1,np confirming that

physical contacts are more important in explaining infection transmission than

non-physical contacts [24, 26]. However, the unavailability of proximity informa-

tion for the TUD limits the validity of the ‘intimacy’ experiment. Indeed, the

posterior Bayes factor from using the suitable matrix is higher in the intimacy

model than in the basic model (242.204 vs 239.688).

DISCUSSION

In recent years, the availability of social contacts data [15, 21, 37] as well as

TUD [16] has improved our understanding of mixing patterns, infectious disease

modeling, and the evaluation of alternative intervention strategies [9, 38, 39, 40].

In previous works, the focus was on the concept of “contacts”. However, the

number of social contacts is only one among the critical variables that characterize

individual interactions and cause infection transmission. Ideally, we would like to

know other quantities relevant for transmission, such as the amount of excreted
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infectious virus (e.g., through coughing, sneezing or exhalation) and its propaga-

tion dynamics [41, 42, 43]. In practice, the difficulties in measuring these variables

induce us to consider possibly correlated quantities, such as the duration of expo-

sure between individuals. For instance, if a sneeze during a contact substantially

increases the probability of transmission, then a longer contact is more likely to

lead to transmission of the infection, as it is more likely that at least one sneeze

occurs during the contact. In other words, it is highly likely that the occurrence

of some “suitable events” (e.g., kiss, handshake, sneeze, etc.) is positively related

to the duration of the contact. For highly transmissible infections (e.g., measles)

a short duration of exposure between an infected individual and a susceptible one

might be sufficient for transmission. If the infection is not highly transmissible, a

longer duration of exposure may be needed. Does this mean that many contacts

are in this case “wasted” for transmission? Is there an MSD of exposure below

which transmission cannot occur?

The present paper attempts to answer the previous questions by integrating

into a single unified contact model the number of encounters (from contact survey)

and the duration of exposure (from TUD). The main idea is that a contact is

“suitable” for transmission only if it lasts for a sufficiently long (infection-specific)

time.

Our approach allows us to generate a large class of contact matrices by appro-

priately varying the dimensional unit of the exposure matrix, taken as a proxy of

the MSD across different infections. For small values of the MSD, we obtain the

standard contact matrix itself (i.e., Polymod matrix), suggesting that for highly

transmissible infections only the number of contacts matters. For larger values of

the MSD (infections with lower transmissibility), the number of contacts becomes
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less critical, as some of these contacts might not receive enough exposure duration

and therefore are not suitable. Thus, the ensuing contact matrix is less assortative

because age groups with large numbers of contacts are more heavily penalized for

the lack of exposure time.

Our method was tested against Italian seroprevalence data for varicella. The

results are, in terms of goodness of fit, consistent with previous works [24, 26]. For

varicella, the required duration of exposure is fairly small, confirming that varicella

is a highly transmissible infection.

Our work is the first attempt to develop a consistent framework to disentangle

the relative importance of number of contacts and duration of exposure using

the most relevant available data sets. In addition, we use Bayesian techniques to

formally incorporate epidemiological knowledge about quantities of interest. The

unified framework generates entire posterior distributions for model parameters.

The distributions may reveal asymmetries in uncertainty that are important to

consider when planning public health interventions.

This work opens several possibilities for future research. First, it will be im-

portant to test the model against less transmissible infections such as bacterial

infections [44, 45, 46], or viruses like parvovirus B19 and Hepatitis A [47, 48, 49],

or pandemic influenza in outside-of-school settings [50]. Second, it will be im-

portant to improve the approach to generate suitable matrices by deepening our

understanding of contacts and TUD, and their inter-relationships. For example,

the duration of exposure matrix used here relies on the assumption of no assor-

tativeness at the level of single activities and time slots recorded by the TUD [as

in 16]. Clearly, duration of exposure might be more assortative and this could

be investigated by integrating TUD and Polymod contact data stratified by the
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duration of contacts. Third, it will be relevant for control interventions to study if

the proportion of contact suitable for transmission is constant in different settings

(ie. household, school, work-place).

In conclusion, our approach generates noteworthy insights regarding the frac-

tion of time of exposure between age groups that is suitable for transmission. This

new methodology is relevant to evaluate the impact of public health interventions

such as vaccination, screening or distance-based measures, on disease burden. For

the first time, both number and duration of contacts are considered, and their rel-

ative importance in explaining infection data is evaluated. Though more work is

needed to fully disentangle their role, our analysis provides a tool for generating a

class of contact matrices that can be used to model infections with different levels

of transmissibility.
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Appendix: Occupancy problem

Consider the number of suitable minutes of contact between groups i and j, (q2eij),

as ‘balls’, and the number of contacts between groups i and j, (cij), as ‘boxes’,

then the expected number of suitable contacts between the two age groups can be

thought of as the expected value of occupied boxes from randomly assigned balls.

To compute this expected value, define the indicator function:

Zi =

 1 if the contacted person i receives zero suitable minutes;

0 otherwise.

We obtain (by Poisson approximation)

E[Zi] = Pr[Zi = 1] = (1− 1

cij
)
q2eij

≈ e−q2eij/cij

Consider now Z =
∑cij

i=1 Zi. The variable Z is the total number of contacted

people who do not receive any suitable minute of transmission. Its expected value

is:

E[Z] =

cij∑
i=1

E[Zi] ≈
cij∑
i=1

e−q2eij/cij = cije
−q2eij/cij .

Therefore the expected number of suitable contacts between age groups i and

j is cij(1− e−q2eij/cij ).
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Figure 2: Prior (solid line) and posterior (histograms) distributions for the input pa-
rameters q1 and q2 and the output R0.
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Figure 3: Fit of the model to serological VZV data for Italy. Points are observed
serological data with size proportional to the corresponding sample size; solid line is the
estimated prevalence when q1 and q2 are equal to their posterior modes; dashed lines are
the estimated prevalence when q1 and q2 are equal to 2.5% and 97.5% quantiles of their
posterior distribution. The bold solid line at the bottom of the graph is the estimated
force of infection with its minimum and maximum values reported.
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Table 1: Definition and Description of the Alternative “C” and “E” Matrices Used as
Inputs for the Suitable Contact Matrices.

Matrix Type (contact/exposure) Source

Polymod baseline contact (all) Survey data (Mossong et al 2008)
Polymod physical contact (physical) Survey data (Mossong et al 2008)
Polymod nonphysical contact (non-physical) Survey data (Mossong et al 2008)
TU baseline duration of exposure Italian TUD 2002-2003

Zagheni et al. (2008) method

30



T
ab

le
2:

F
it

s
of

th
e

B
as

ic
an

d
In

ti
m

ac
y

M
od

el
s

B
as

ed
on

th
e

Su
it

ab
le

M
at

ri
x.

F
it

s
Fr

om
St

an
da

rd
C

on
ta

ct
an

d
T

im
e

U
se

M
at

ri
ce

s
ar

e
A

ls
o

R
ep

or
te

d
fo

r
C

om
pa

ri
so

n
P

ur
po

se
s.

It
al

y,
19

97
-2

00
6†

.

B
a
si

c
M

o
d
e
l

P
o
st

e
r
io

r
P
o
st

e
r
io

r
9
5
%

P
o
st

e
r
io

r
9
5
%

P
o
st

e
r
io

r
9
5
%

B
a
y
e
si

a
n

M
o
d
e

C
r
e
d
ib

le
m

e
a
n

C
r
e
d
ib

le
M

o
d
e

C
r
e
d
ib

le
F
a
c
to

r
q 1

In
te

r
v
a
l

q 2
In

te
r
v
a
l

R
0

In
te

r
v
a
l

P
o
ly

m
o
d

b
a
se

li
n

e-
T

U
b

a
se

li
n

e
2
3
9
.6

8
8

0
.0

3
3

0
.0

3
0
,0

.0
4
3

0
.2

6
0

0
.0

9
6
,0

.9
4
1

4
.3

8
1

4
.2

4
3
,4

.3
0
7

P
o
st

e
r
io

r
9
5
%

P
o
st

e
r
io

r
9
5
%

M
o
d
e

C
r
e
d
ib

le
M

o
d
e

C
r
e
d
ib

le
q

In
te

r
v
a
l

R
0

In
te

r
v
a
l

P
o
ly

m
o
d

b
a
se

li
n

e
2
3
8
.9

2
7

0
.0

3
1

0
.0

3
0
,0

.0
3
3

4
.7

3
4

4
.5

2
0
,4

.9
8
7

T
U

b
a
se

li
n

e
2
4
9
.3

4
0

0
.0

0
1
2

0
.0

0
1
1
,0

.0
0
1
3

4
.2

5
5

4
.0

3
9
,4

.4
4
9

In
ti

m
a
c
y

M
o
d
e
l

P
o
st

e
r
io

r
P
o
st

e
r
io

r
9
5
%

P
o
st

e
r
io

r
9
5
%

P
o
st

e
r
io

r
9
5
%

P
o
st

e
r
io

r
9
5
%

B
a
y
e
si

a
n

M
o
d
e

C
r
e
d
ib

le
M

o
d
e

C
r
e
d
ib

le
M

o
d
e

C
r
e
d
ib

le
M

o
d
e

C
r
e
d
ib

le
F
a
c
to

r
q 1

,n
In

te
r
v
a
l

q 1
,n

p
In

te
r
v
a
l

q 2
In

te
r
v
a
l

R
0

In
te

r
v
a
l

P
o
ly

m
o
d

b
a
se

li
n

e-
T

U
b

a
se

li
n

e
2
4
2
.2

0
4

0
.0

4
3

0
.0

3
4
,0

.0
6
3

0
.0

0
2
7

0
.0

0
0
4
,0

.0
4
0
0

0
.5

5
4

0
.0

6
7
,0

.9
7
6

3
.5

6
0

3
.3

6
2
,4

.6
5
6

P
o
ly

m
o
d

b
a
se

li
n

e
2
3
9
.8

7
1

0
.0

3
9

0
.0

3
3
,0

.0
4
1

0
.0

1
0

0
.0

1
0
,0

.0
3
0

3
.9

5
6

3
.8

6
4
,4

.7
1
0

†S
er

o
lo

g
ic

a
l

sa
m

p
le

s
w

er
e

co
ll
ec

te
d

b
et

w
ee

n
1
9
9
7

a
n

d
2
0
0
3
,

T
im

e
U

se
D

a
ta

in
2
0
0
2
-0

3
,

P
o
ly

m
o
d

d
a
ta

in
2
0
0
6
.

E
st

im
a
te

s
o
f

th
e

q
p

a
ra

m
et

er
s

a
re

n
o
t

co
m

p
a
ra

b
le

d
u

e
to

th
e

d
iff

er
en

t
sc

a
le

s
o
f

th
e

u
n

d
er

ly
in

g
m

a
tr

ic
es

.

31


