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1. Introduction 

 

Istat has a longstanding tradition in the regular production of population projections. Since the 

mid-80’s Istat has been in charge of official deterministic projections in Italy. This approach includes 

plausible variants based on different assumptions regarding the future evolution of each demographic 

factor, in the more general framework of the cohort-component model. 

Latest (2011-based) official projections have been developed on a set of assumptions about future 

– until 2065 - levels of fertility, mortality and migration, according to the so called scenario approach:  

a main variant assumed as best performance of the future demographic trend, integrated with two 

variants, namely the high and low scenario, having the task of defining, albeit in a deterministic 

approach, the level of the future uncertainty. Furthermore, projections have been produced separately 

for each region (NUTS2 level); consequently data for Italy as a whole is an outcome resulting from the 

sum of 21 regional forecasts. With regard to regional assumptions we adopted a convergence scenario 

for each demographic component. That means all regions reach the same value in a given year in the 

future that is beyond the time horizon of our forecasts.  

In the last years some national statistical offices have started to produce population forecasts in a 

stochastic approach. The main goal of probabilistic population projections is to obtain prediction 

intervals of demographic variables and thus to measure projection uncertainty. With variant 

projections, on the other hand, the user has no idea how likely they are, so he has to trust that the 

experts have provided them with scenarios representing the “most likely” variant and its plausible 

borders (Abel et al., 2010). 

Stochastic forecasts therefore have the advantage of providing to user the level of likelihood that a 

particular future population value will occur given a set of assumptions about the underlying 

probability distributions. 

In recent years several methods of stochastic forecasts have developed. They can be grouped 

under three widely recognised approaches, each one of them giving the probability distributions for 

fertility, mortality and migration: 

• probabilistic projections based on  analysis of past forecast errors;  

• probabilistic projections based on expert elicitations; 

• probabilistic projections based on time series analysis. 

In this paper we expose the first attempts to produce stochastic population projections for Italy in 

addition to the official deterministic population projections currently released by Istat. 

We have implemented two different methods: a forecast based on the Conditional Expert Opinions 

(Billari et al., 2012) and a second one on the Scaled Model of Error (Alho and Spencer, 1997). The first 

method, falling within the so called random scenario approach, is built on the use of expert opinions in 

the definition of conditional probability distributions for the selected demographic indicators. The 

second one is based on the extrapolation of empirical errors, where assessment of uncertainty is 

modelled according to the analysis of past projections errors. 

We start from hypotheses made under official projections produced by Istat. Both the methods use 

the official deterministic assumptions as input. 

With regard to expert-based method, the expert opinions were then replaced by the official 

scenarios (main and high); while for the scaled model of error the input consists of age-specific rates 

for fertility and mortality and the absolute values by age for international migration. 

In summary, deterministic projections were taken into account as starting inputs of two stochastic 

forecasting methods, but their inclusion in the data processing was different. 



In the next section we describe operational choices and procedures adopted for the processing of 

latest deterministic Istat projections (Istat, 2011).  

In the third section we expose the stochastic methods and their implementation on the basis of the 

input at our disposal. 

Finally we explore the results arising from the two stochastic methods and we make a comparison 

between the stochastic and deterministic approaches. 

 

 

2. Official deterministic projections: data, methodology and assumptions 

 

2.1 Data and model 

 

The calculations are developed on the basis of the traditional cohort-component model, processing 

demographic events for each calendar year by region, gender and single cohort.  The assumptions 

were created by implementing for each component of the population change well-known standard 

projection models on latest time series available at Istat: 1952-2008 for age-specific fertility rates, 

1974-2008 for life tables, 2005-2009 micro data for internal migration and outmigration. Time series 

were then completed until the year 2010, using provisional data on the total intensity of each 

demographic component and making some estimates about the requested breakdown. The base year 

population is the one observed on Jan 1st 2011.    

Given that a convergence scenario among the Italian regions has been hypothesized the territorial 

differences in term of demographic behaviour are expected to fade out in the long run. The operational 

choice in order to ensure convergence varies for each of the three demographic components. These 

are described below together with the assumptions used to derive future values of the main 

demographic synthetic indicators in association with their own age profiles. 

 

2.2 Fertility assumptions 

 

We performed some time-series analyses in order to extrapolate forecasts of the total fertility rate 

(TFR). We chose a LogisticARIMA(1,1,0) to model its future evolution for Italy as a whole and for each 

single region separately. The main convergence scenario finally provides that, from 2011 to 2130 

(convergence year), each region converges linearly towards the national context. Alternative scenarios 

were made on the basis of confidence intervals of the regional estimates and repeating the same 

procedure of the main scenario.  

The outcome of the above procedure is a TFR that at national level increases in 2011-2065 from 

1.42 children per woman to 1.61 according to the main scenario. A stronger recovery of the TFR is 

expected under the high scenario, 1.83 children per woman, while it remains almost stable in the low 

scenario, with a levelling off at 1.38 in the long run. 

The fertility age schedules have been modelled using a system of quadratic splines (QS model) 

developed by Schmertmann (2003). The Schmertmann model describes the shape of the age fertility 

rates (ASFR) using only three parameters: 

• the starting age of fertility α; 

• the age P at which fertility reaches its peak level; 

• the youngest age H above P at which fertility falls to half of its peak level. 

The QS model fits five quadratic polynomials to ASFR schedules. The resulting shape function is 

continuous with the first derivate also continuous. Thanks to appropriate mathematical restrictions 

the shape function is uniquely determined by the index ages [α, P, H]. 

Fitting the past age patterns for each region and for Italy as a whole from 1952 to 2010 we define 

future trends of three parameters α, P, H until 2065 as follows: 

• α is modelled as a AR(1)  and it’s assumed to be the same for each variant 

• P and H are modelled as a LogisticARIMA(2,1,0). 

• Regional estimates of Α, P and H converge by 2130 to the values obtained for Italy as a 

whole. 



Table 1 shows the assumptions on TFR and Schmertmann’s parameters for Italy by variant. 

 
Table 1 - Schmertmann’s parameters and TFR by variant, Italy, 2011-2065 

Year 
α 

P H TFR 

low main high low main high low main High 

2011  11.96   32.37   32.52   32.65   37.54   37.67   37.80   1.40   1.42   1.44  

2020  12.39   32.24   32.92   33.49   37.46   37.91   38.32   1.38   1.46   1.53  

2030  12.68   32.01   33.17   34.11   37.26   37.95   38.58   1.37   1.49   1.60  

2040  12.85   31.71   33.36   34.58   37.10   37.98   38.77   1.37   1.53   1.67  

2050  12.95   31.44   33.50   34.93   36.94   38.00   38.91   1.37   1.56   1.74  

2060  13.04   31.20   33.62   35.19   36.79   38.00   39.01   1.37   1.60   1.80  

2065  13.07   31.10   33.67   35.31   36.73   38.00   39.05   1.38   1.61   1.83  

 

2.3 Mortality assumptions 

 

In order to derive future level and age pattern of mortality the standard Lee-Carter model was 

performed. The model describes the shape of the log-mortality using the following three parameters: 

kt, ax and bx. The first is a general mortality index varying over time while ax and bx are age-depending 

parameters.  The three parameters are linked each other by almost precise relationships, so that it’s 

quite simple to derive them by fitting the model to the time series 1974-2000 of mortality rates. The 

predicted values of mortality can then be found by projecting into the future only the parameter kt. 

Because of the linearity of kt at national level, we modelled it with a random walk with drift for the 

period 2011-2065 in order to obtain the main scenario. Alternative scenarios are generated from   

confidence intervals of kt obtained by using the standard error of kt derived from the input data.  

Regional assumptions are then obtained, for each parameter and for each scenario, by converging 

regional predictions to the national one by 2165. 

Looking at the more important results, life expectancy at birth should increase, especially as 

regards men, though not at the same pace as the one registered in the past 30 years. In particular, in 

the main scenario life expectancy at birth for men rises from 79.5 to 86.6 years (+7.1) and for women, 

from 84.6 to 91.5 (+6,9). 

 
Table 2 – Life expectancy at birth and at 65 years by sex and variant, Italy 2011-2065 

Year 
Men Women 

At birth At 65 years At birth At 65 years 

low main high low main high low main high low main High 

2011 79.2 79.5 79.8 18.3 18.4 18.6 84.3 84.6 84.9 21.8 22.0 22.2 

2020 80.2 81.2 82.1 18.9 19.5 20.2 85.1 86.2 87.2 22.4 23.2 24.0 

2030 81.4 82.8 84.1 19.7 20.7 21.6 86.2 87.7 89.2 23.2 24.5 25.7 

2040 82.5 84.2 85.7 20.5 21.7 22.8 87.1 89.1 90.8 24.0 25.5 27.0 

2050 83.4 85.3 87.0 21.1 22.5 23.8 87.9 90.2 92.2 24.6 26.5 28.2 

2060 84.1 86.2 88.1 21.6 23.2 24.7 88.6 91.1 93.4 25.1 27.3 29.2 

2065 84.4 86.6 88.6 21.8 23.5 25.1 88.8 91.5 93.8 25.4 27.6 29.7 

 

2.4 Migration assumptions 

 

In recent years immigration flows have become more pronounced in Italy, particularly because of 

the growing number of arrivals from Eastern Europe and southern areas of the world. As a result, 

international migration has now become a separate and crucial component in the projection as it 

determines important changes both regarding sex and age structure of the population and the ethnic 

and cultural composition of the country itself. Accordingly, in order to capture the more recent trends, 

we focus our analysis just on the last six years, namely 2005-2010. This limit, combined with the 

difficulty of making predictions on international migration, does not recommend the use of an 

approach based on the analysis of time series, to such an extent we preferred to choose a simple model 

of projection.  

Our solution is that in the first year of projection (2011) the total inflows and outflows are, 

respectively, the average value calculated over the last five observed years. Then, in accordance with 



the overall framework of convergence we assume for fertility and mortality as well, we assume that 

inflows and outflows should converge to the same level in the long run. The above procedure was 

applied for each region and it gives the results for Italy as a whole shown in Figure 1. What 

differentiates the three variants is the year in which convergence is supposed to verify: 2130 in the 

main, 2095 in the low and 2165 in the high scenario. The way the outflows converge in the long run is 

linear, while it’s almost linear for inflows. Actually, for the first years of projection we introduced a 

decreasing factor of reduction to immigration, in order to avoid a too strong impact on the overall 

dynamic of the population. 

Once the total level of outmigration is obtained the distribution by age is derived fitting a Rogers-

Castro model to the 2005-2009 micro data (Rogers and Castro, 1981).  The model parameters thus 

estimated are kept constant throughout the forecast period (Figure 1).   

 
Figure 1 – International migration: Expected values of immigrants and emigrants by calendar year and 

variant (in thousand) and age profiles of immigrants/emigrants by sex 

 

 

Although not representing a subject of specific analysis in this paper, it is worth remembering the 

important role played by internal migration for countries as Italy when dealing with regional 

projections. Its contribution in determining developments for regional population still remains 

significant, above all when compared to the weaker roles played by natural components, namely 

fertility and mortality. Over the last five years an average of about 1,4 million people changed the place 

of residence for internal destinations in Italy, 25% of which due to interregional movements the 

remaining 75% due to intraregional ones. 

In our regional projections internal migration is processed by building a multi-regional matrix of 

probabilities by region of origin and destination, sex and age. Such a matrix, applied to the population 

at risk to perform an interregional migration, provides for each year of projection a coherent number 

of immigrants/emigrants to/from each region. In specific terms, the projection migration matrix of 

probabilities is defined fitting a Rogers-Castro model on 2005-2009 micro data for each couple of 

regions of origin/destination. Alternative scenarios are then built in a deterministic approach by 

increasing or decreasing the level of internal migration on the basis of specific push-pull factors among 

the Italian regions (for instance, changing by 5% each year the propensity to move towards Northern 

regions). 

 

3. Implementation of  two stochastic models at national level 

 

Before describing the details of the procedures we used for implementing our stochastic approach, 

we should make some considerations about the reasons that helped us in the choice of the methods. 

The Scaled Model of Error has been widely used in international studies for the last decade. It 

represents a point of reference for scholars, like us, who for the first time aim at producing 

probabilistic forecasts. It should also be emphasized its ease of use, thanks to the availability of PEP 

software, the parameters for its application and an extensive and depth bibliography on the subject. 

The second method, the Conditional expert opinion model, is rather new, although the theoretical 

assumptions upon which it relies are less recent. Nevertheless, in our opinion this method is easy to 

understand and implement and it allows a discrete flexibility with regard of data and analysis needs.   

Even at the risk of repeating ourselves, we emphasize once again the improper way we have used 

this method: we, actually, consider ourselves as experts and our deterministic projections as 

responses of the experts. However, we have the willing to use it more appropriately in the future. In 



fact, in the framework of a national research project (PRIN) coordinated by Bocconi University of 

Milano we are actively participating to the preparation of a questionnaire that will be given to national 

experts (mainly demographers). The goal will be to obtain elicitations from them on the future 

evolution of main demographic indicators. 

Finally, we point out that even with regard to Scaled Model of Error our official forecasts provide 

the inputs needed to run the software PEP. 

 

3.1 Expert-based method 

 

The method is based on the elicitation of a set of parameters that allow to describe the future 

evolution of each demographic component. The method proceeds through a series of subsequent 

expert-based conditional evaluations on (summaries of) demographic indicators, given the values of 

the rates at some previous time points (Billari, Graziani and Melilli, 2010). 

Each indicator (R) is required to be predicted in two time-points:  an intermediate year (t1) and the 

end of the projection horizon (t2).  In our study we consider t0=2011, t1=2040, t2=2065, so generating 

two subintervals, 2011-2040 and 2040-2065.  

It is also assumed that the vector (Rt1, Rt2) is distributed as a bivariate normal. The next step is to 

obtain the values of demographic parameters for each forecast year by interpolation with linear or 

quadratic functions,  the choice between them depending on the best fit to the observed past trends.  

Finally, age-specific rates are derived from synthetic indicators through the application of 

demographic models mentioned below. 

We chose to summarize demographic components through a series of indicators: 

a. Total fertility rate (TFR). 

We obtain the time-series 2011-2065 trough linear interpolation from 2011 to 2040 and from 

2040 to 2065 thanks to the elicitations of the experts. In order to derive ages-specific rates we 

make use of the methodology proposed by Schmertmann (2003). The parameters to be taken 

into account are then the age P at which fertility reaches its peak level and the youngest age H 

above P at which fertility falls to half of its peak level.  

b. Life expectancy at birth by sex (EM, EF). 

Interpolation of life expectancy at birth is obtained through a quadratic function. The age-

specific distribution is derived from a Lee-Carter model, the parameters ax and bx deriving 

from the assumptions of the deterministic model adopted by Istat for Italy. Then kt is obtained 

ex-post by constraint with the assumed levels of life expectancy.  

c. Migration by sex (IMM, IMF, EMM, EMF) 

As concerns emigration we interpolated linearly from 2011 to 2040 and from 2040 to 2065 the 

expert’s elicitations. Immigration values for each calendar year are obtained by a quadratic 

function. Both for emigration and immigration age specific values are obtained processing a  

Castro-Rogers model; the model parameters emerge from deterministic projections. 

We assume the indicators being mutually independent. According to the standard stochastic 

methodology for each indicator R we focus our interest on the joint Gaussian distribution of R2040 and 

R2065, where: 

• µ1 is the main scenario for the indicator R at the time point t1; 

• q1 is the high scenario (e.g. the quantile of order q) for the indicator R at the time point t1; 

• µ2=E(R2065|R2040=µ1) is the main scenario for the indicator R at the time point t2; 

• q2=E(R2065|R2040=q1) is the conditional main scenario at time t2 given that, at time t1, the 

indicator assumes the value of  the high scenario fixed in the previous step (q1); 

As described above we consider the assumptions produced under the deterministic Istat 

projections as expert opinions providing the necessary input for implementing the expert-based 

method. Table 2 shows the latest Istat assumptions under the scenarios main and high. In fact, for 

implementing purposes it suffices to consider the elicitations provided for the main variant and for 

one of the two possible alternatives. 

Once collected all the necessary input we get the conditions to define the stochastic process for 

each demographic indicator. Finally 1,000 samples are drawn from the corresponding bivariate 

distributions and a cohort-component model has been processed for each of them. Table 3 shows 



means, variances and correlation coefficients where, q is the order of quantile of the normal random 

variable Rt1.  

 
Table 2 - Istat assumptions on fertility, life expectancy at birth and international migration  

 2010 2040 2065 

µ(TFR)  1.41  1.53 1.61 

q(TFR)  1.67 1.83 

µ(P)  32.57  33.36 33.67 

q(P)  34.58 35.31 

µ(H)  37.75  37.98 38.00 

q(H)  38.77 39.05 

µ(EM)  79.20  84.20 86.60 

q(EM)  85.70 88.60 

µ(EF)  84.40  89.10 91.50 

q(EF)  90.80 93.80 

µ(IMM)  199,880  146,048 141,286 

q(IMM)  158,460 155,487 

µ(IMF)  231,895  170,163 162,568 

q(IMF)  184,891 179,850 

µ(EMM)  39,738  55,898 64,204 

q(EMM)  47,930 50,427 

µ(EMF)  33,630  53,824 63,917 

q(EMF)  43,771 46,861 

 
Table 3 - Means, variances, correlations obtained from ISTAT scenarios assumptions (q=0.9) 

 µ2040 µ2065 σ2
2040 σ2

2065 Ρ 

TFR  1.53   1.61   0.01   0.04   0.844  

P  33.36   33.67   0.90   2.39   0.803  

H  37.98   38.00   0.38   0.98   0.800  

EM  84.20   86.60   1.37   3.58   0.800  

EF  89.10   91.50   1.76   4.69   0.804  

IMM  146,048   141,286   93,814,101   200,969,177   0.753  

IMF  170,163   162,568   132,083,454   291,920,602   0.761  

EMM  55,898   64,204   38,652,243   147,778,082   0.866  

EMF  53,824   63,917   61,529,835   228,400,817   0.861  

 

3.2 Scaled model of error 

 

Probabilistic simulations have been produced by implementing the Scaled Model of Error (Alho 

and Spencer, 1997) through the use of software PEP: (http://joyx.joensuu.fi/~ek/pep/userpep.htm). 

The computer program PEP was used to produce the forecast for 18 European countries in the 

Uncertain Population of Europe Program (UPE) project (Alders et al., 2007). 

This model treats the age-specific rates for fertility and mortality and the age-specific numbers of 

net migration as statistical distributions. The model also requires the specification of correlation of the 

error for each demographic component across age and over time, and correlation between male and 

female mortality. 

In detail, the logarithm of a generic age-specific rate, log R(j,t), is modelled as follows: 

logR(j,t)=logR ̂(j,t)+X(j,t),   j=1…J, t=1….T 

where R^(j,T) is the value of the age-specific rate (or the absolute number of net-migrants for 

migrations) coming from our deterministic projection and representing the expected value of a 

statistical distribution, j is the notation for age, t is the notation for time, and X(j,t) is the distance 

(error) between the true value of the age-specific rate and our input value. This last component is 

decomposed through a sum of forecast errors: 

X(j,t) = ε(j,1) + ... + ε(j,t). 



The model assumes that the error increments are of the form:  

ε(j,t) = S(j,t)(ηj + δjt) 

where (Graziani and Keilman, 2011): 

• S(j,t) are deterministic scale terms; 

• the variables ηj are only age dependent and they are assumed to have a Normal distribution 

with mean 0, variance kj, and the correlation (ηi,ηj) having an AR(1) structure; 

• the variables δjt are assumed to be uncorrelated across time, to have, for every time t, a Normal 

distribution with mean 0 and variance 1- kj, while the correlation (δi, δj) is treated as for the  ηj 

terms; 

• the variables ηj and δj are assumed to be uncorrelated. 

Finally the assumptions on the model parameters – k, S and correlations - are the same as those 

used in the UPE project. The final results are ex-post aggregated after having launched 1,000 

simulations. 

 

4. Main results 

 

A preliminary consideration is that the implementation of the two methods produces different 

outcomes. The use of Pep software provides, for each simulation, statistics on population and life 

expectancy by age, sex and calendar year. Therefore no information is available about demographic 

flows (deaths, births and migration). The expert based method, on the other hand, provides a full 

outcome, including each component of the population change. For this reason a full comparison 

making cannot be carried out between the outputs of the two methods, limiting our analysis just to the 

total population and to its age structure.  

Table 4 displays the median values of the total population for 2012-2065 produced under different 

stochastic forecasts: the Scaled model of error (SME) and the Expert-based method (EBM) at three 

different values of q. Despite not being properly correct to make comparisons with the deterministic 

approach, latest Istat deterministic projection (main variant) is also reported in the table. From this 

latter point of view the SME seems to reproduce faithfully the values of the official forecast, whereas 

for the EBM the more we move away from the base year the more the distance increases, especially 

when elicitations are retained not to be very accurate.  

 
Table 4 – Total population: deterministic projections and probabilistic forecasts (median value) from 

Scaled model of error and Expert based method (different levels of q value) 

Year Deterministic 

projections 

(main variant) 

Scaled model 

of error 

Expert-based 

method 

(q=0.90) 

Expert-based 

method 

(q=0.80) 

Expert-based 

method 

(q=0.70) 

2012  60,916,192   60,886,589   60,942,431   60,942,735   60,942,311  

2020  62,497,034   62,290,647   62,883,995   62,892,989   62,878,771  

2030  63,482,851   63,302,297   64,299,265   64,352,058   64,354,279  

2040  63,889,453   63,846,000   64,951,855   65,145,122   65,193,374  

2050  63,546,405   63,636,822   64,661,195   65,090,457   65,335,533  

2060  62,169,504   62,468,252   63,294,853   64,082,011   64,891,271  

 

Figure 2 shows the evolution of total population at different levels of confidence intervals. One can 

easily observe how EBM allows to define forecasts with a lower level of uncertainty.  Nevertheless, we 

have to stress how the EBM could result quite sensitive to the level of accuracy (q value) we assign to 

the expert opinion. In quality of absolute beginners in the attainment of probabilistic forecasts, such a 

result represents a warning for us: as far as we can our goal is to find out a way for measuring 

uncertainty, but we see that doing more tests with different methods or selecting different options of 

the same method we are not in a condition to establish with certainty what is the “true” uncertainty. 

After this necessary premise, our next comments regard only the projections made with the 

Stochastic Model of Error and the Expert Based Method with q=0.7 (hereinafter EBM0.7). Our 

intention is to have comparable levels of uncertainty, that is the point on which we focus our interest, 

since in our study these latter two alternatives produce closer results. 



Figure 2 – Total population: forecasts and 85%, 75% and 65% Confidence Intervals (in million) from 

Scaled model of error and Expert based method (different levels of q value) 

 

 
 

Figures 3-5 show the evolution of the population by main age-group. At a first look SME and 

EBM0.7 provide projections giving similar trend along time. This result is implicitly derived from the 

age composition of the population in the base-year and from the quite common assumptions on the 

demographic flows.  Looking at uncertainty, it must be stressed how our forecasts seem to produce 

very low variability throughout the initial period of the forecast, particularly with regard to EBM0.7 

where uncertainty practically does not exist, at least until the year 2020. After which, in the mid and 

long term EBM0.7 shows a lower variability as compared to the one obtained from SME. For instance, 

examining the confidence interval at 65% by 2065 from SME, we find a bandwidth of 8 million for the 

0-14 age group, 15 million for the 15-64 age group, 8.6 million for the 65 and over age group. The 

corresponding values according to EBM0.7 are equal to 6.8, 8 and 4.8 million. 

 
Figure 3 – Population aged 0-14: forecasts and 85%, 75% and 65% Confidence Intervals (in million) from 

Scaled model of error and Expert based method (q=0.70) 

 
 
Figure 4 – Population aged 15-64: forecasts and 85%, 75% and 65% Confidence Intervals (in million) 

from Scaled model of error and Expert based method (q=0.70) 

 



Figure 5 – Population aged 65 and over: forecasts and 85%, 75% and 65% Confidence Intervals (in 

million) from Scaled model of error and Expert based method (q=0.70) 

 
 

With some rare exception, as in the case of the 0-14 age group at a 85% level of confidence 

interval, the lower variability highlighted by EBM0.7 is in relation to the way variances and 

correlations are obtained (Billari, Graziani and Melilli, 2010).  In SME variance is estimated from past 

forecast errors. Then forecasts are obtained working directly on fertility and mortality age-specific 

rates, by adding them the shocks with variance and correlation across age and time, as estimated on 

the basis of the past forecast errors time series. In EBM approach, instead, a first step is to randomize 

the indicators (TFR, EM, EF, IMM, IMF) on the basis of expert opinions and a second one is to derive 

the age-specific rates from given demographic models. Another relevant cause is that expert opinion 

from national statistical offices could produce a smaller variance, compared to the variance used in the 

UPE project.  

To better understand which component of the population – young, adult or elderly – is expected to 

present less or more uncertainty we consider the following indicator: 

Ia_y = 100 *  ( FU85 a_y - FL85 a_y ) / FM a_y, 

where FM a_y is the median value of a forecast in the year y for the age group a;  FU85 a_y and FL85 a_y are the 

upper and lower bounds of the 85% confidence interval of the same forecast. In other words Ia_y is a 

standardised indicator, expressing the uncertainty in percentage points.  

Figure 6 shows the percentage relative interval of uncertainty at 85% confidence level by age 

group for SME and EBM0.7. As it was easy to imagine the young population is characterized with a 

greater level of uncertainty. On the other hand, it’s interesting to note that, ceteris paribus, adult and 

elderly present surprisingly the same trend of uncertainty, whichever method is taken into 

consideration.  

 
Figure 6 – Percentage relative interval of uncertainty at 85% confidence level for each age group from 

two stochastic methods 

 

 

 

Dealing with outcome produced by EBM0.7 in term of demographic flows (outcome not available 

for SME), it appears clearly how births are affected by more uncertainty than deaths (Figure 7).  For 

what concerns uncertainty of migration there aren’t substantial differences between inflows and 

outflows, although the former present a greater bandwidth in the long term (Figure 8).  



Figure 7 – Births and deaths: forecasts and 85%, 75% and 65% Confidence Intervals (in thousand) from 

Expert based method (q=0.70) 

 

 
Figure 8 – Immigrants and emigrants: forecasts and 85%, 75% and 65% Confidence Intervals (in 

thousand) from Expert based method (q=0.70) 

 

 
 

Figure 9 – Stochastic Population pyramid in 2065: forecasts and 85%, 75% and 65% Confidence 

Intervals (in thousand) from Scaled model of error and Expert based method (q=0.70) 

 

 
 

Figure 9 shows the stochastic population pyramid by 2065 for both methods, SME and EBM0.7.  

With this representation we can confirm what has emerged from previous analyzes, given that the role 

played by the different components of the population change on the forecast uncertainty can be 

immediately seen. Without any surprise, uncertainty due to mortality is lower than uncertainty 

associated with fertility. Considering the increasing population aging for Italy, most of deaths will 

occur among the adult and, even more, among the elderly populations. So, mortality will involve 

mostly people aged 55 and more, in other words people already born at the beginning of our forecast 

period. Migration will also play an important role, particularly among adult ages and, in correlation 



with fertility, a more pronounced impact at younger ones. Anyway, there’s no doubt that fertility will 

play a major role in term of uncertainty, whichever method one can use, as it involves partially births 

from cohorts not yet born. From this latter point of view we stress that uncertainty released under 

EBM comes very close to uncertainty released under SME. 
 

5. Conclusion 

 

For making probabilistic forecasts, many data are required and several data assumptions need to 

be specified. Furthermore, despite the availability of increasingly powerful hardware and software 

more sophisticated than in the past, data processing can be really time consuming in order to achieve a 

sufficient number of simulations. A lot of details must be specified step by step,  so that the subjective 

element, implied in the projection-maker, persists substantially even in the probabilistic approach, 

exactly as, and perhaps even to a greater extent, than in the deterministic approach.   

We can say this having experienced some simulations on a national basis, but this issue is more 

pronounced when we come down to regional level. In this regard it should be noted that the NSI’s are 

often responsible for the preparation of projections on a regional basis, just as Eurostat is responsible 

for preparing projections for each Member State. Despite not being on the scope of this paper, we 

consider highly important for our institutional responsibilities, as NSI, to facilitate any methodological 

effort in the direction of the stochastic approach under a multi-regional perspective. From that point of 

view the most challenging methodological issue is, according to us, the inclusion of internal migration 

under a stochastic perspective.  

In this paper we present our first attempts to develop stochastic population projections for Italy. 

Bearing in mind our preeminent experience in the production of official deterministic projections for 

Italy, this new activity can then be placed at an experimental stage. We didn’t choose a stochastic 

method a priori, but we decided to use a comparative approach between two alternatives: the Scaled 

Model of Error, one of the most known and used in the production of stochastic forecasts, and an 

expert-based method, developed by Bocconi University.  

Results show that both methods provide median projections really close to each other, but this 

outcome is largely originated by the use of the same data input, namely last (2011-based) official 

deterministic projections by Istat. For the same reason our probabilistic forecasts do not differ much 

from the main variant of the official projections. Therefore the former can provide useful information 

on the accuracy of the latter. 

We then focused on the uncertainty of the projections, which is the main objective when 

introducing stochastic approaches. Our results confirm what has already been noted from past studies 

conducted by leading scholars in this field: assessing the level of uncertainty is clearly the crucial 

question for demographers but the more options we have at disposal, the more challenging becomes 

guessing a suitable choice. Once uncertainty has been quantified, the aim should be not only to find a 

way for reducing it that is – needless to say – a really important matter. Some of the simulations we 

presented here, for instance, show that uncertainty can be very low or even almost entirely absent, 

particularly in the first years of forecasting. In conclusion, an approach born with the spirit to take 

seriously on board the problem of uncertainty in population projections can come to the paradox of 

producing too much accurate forecasts. 
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