
Introduction  

For estimating mortality and fertility patterns several parametric and non-parametric 

techniques have been proposed. The parametric ones are non linear models that represent the 

mortality pattern as a function of age and a number of parameters. (e.g. Heligman-Pollard, 

1980; Hartmann, 1987; Forfar, et al. 1988; Kostaki, 1992; Hannerz, 1999). The non-

parametric approaches does not involve functional forms or parameters of such forms. In 

general non-parametric methods apply to very wide families of distributions rather than only 

to families specified by a particular form.  

As regards to mortality estimation two broad strategies are utilized for representing the 

mortality pattern of a population. The first one is based on the use of model life tables that can 

appropriately represent the mortality experience. The second one refers to the use of some 

graduation technique, applied to the empirical age-specific death frequencies for extracting 

the underlying probabilities of dying under the assumption that the later follows a smooth 

pattern. The mortality smoothing problem is of specific interest since the age-specific 

mortality rates exhibit a complex though typical pattern with significantly varying levels and 

curvature throughout the ages. Therefore many standard graduation techniques can produce 

inaccurate results, especially at the ends of the age interval.  In the literature several models 

have given accurate results such as the Heligman-Pollard eight and nine parameter formula 

(Heligman and Pollard, 1980; Kostaki, 1992) as well as kernel estimates (Hardle, 1990; 1991; 

Bowman and Azzalini, 1997; Peristera and Kostaki, 2007; Peristera, 2008).  

As regards to fertility estimation there is a vast literature about models that estimate the 

corresponding pattern. Various parametric and non parametric graduation techniques have 

been proposed for estimating age-specific female fertility patterns e.g. the Coale-Trussell 

function (Coale and Trussell, 1974; 1978), the Beta, the Gamma and the Hadwiger 

distributions (Hoem et al., 1981; Hadwiger, 1940; Gilje, 1969; Yntema, 1969), cubic splines 

(Hoem and Rennermalm, 1978; Gilks, 1986) the parametric models proposed by Peristera and 

Kostaki (P-K models) in 2007. Recently, new models have been proposed for estimating the 

distorted fertility pattern consisting of two humps, one at earlier ages and a second at later 

ages, indicating heterogeneity of these populations in the fertility behavior (Chandola et al., 

1999; Peristera and Kostaki, 2007).  

In this work emphasis is given in the use of wavelet estimates for estimating mortality and 

fertility patterns from various populations. The theoretical properties as well as their 

application for graduation purposes of demographic rates will be examined. Various types of 

wavelet estimates are evaluated for several populations. In order to test the reliability of the 

produced results we compare them with other methods either parametric or non-parametric.  



 

Methodological Issues  

Wavelet estimates is a general mathematical tool with applications in different scientific 

areas. Lately, wavelets are used for statistical analyses purposes, such as non-parametric 

regression analysis, density estimation, time series analysis, etc. (Abramovich et al., 2000; 

Antoniadis, 1997). However, they have not been evaluated so far in the case of demographic 

data. Various types of wavelets estimates have been proposed in the literature. The choice 

depends on the type of the problem as well as in the structure of the data. Furthermore the 

choice of the appropriate degree of smoothness is required for using these estimates. 

In non-parametric regression, the goal is to recover an unknown function, say g, based on 

sampled data that are contaminated with noise. Denoising techiques provide a very effective 

and simpleway of finding structure in data sets without the imposition of a parametric 

regression model (as in linear or polynomial regression for example). Only very general 

assumptions about g are made such as that it belongs to a certain class of functions. Thus, 

simple denoising algorithms that use the wavelet transform consist of three steps: 

1) Calculate the wavelet transform of the noisy signal. 

2) Modify the noisy wavelet coefficients according to some rule. 

3) Compute the inverse transform using the modified coefficients. Traditionally, for the 

second step of the above approach there are two kinds of denoising methods; namely, linear 

and nonlinear techniques 

 
 
The nonparametric regression literature was arguably dominated by (nonlinear) wavelet 

shrinkage and wavelet thresholding estimators. These estimators are a new subset of an old 

class of nonparametric regression estimators, namely orthogonal series methods. Moreover, 

these estimators are easily implemented through fast algorithms so they are very appealing in 

practical situations  (Donoho and Johnstone, 1994; Donoho et al., 1995). Several new wavelet 

based curve smoothing procedures have been recently proposed, and one of the purposes of 

this review is to present few of them under the general concept of penalized least squares 

regression. 

 
The term wavelets is used to refer to a set of orthonormal basis functions generated by 

dilation and translation of a compactly supported scaling function (or father wavelet), φ, and a 

mother wavelet, ψ, associated with an r-regular multiresolution analysis of L2(R). A variety 

of different wavelet families now exist that combine compact support with various degrees of 

smoothness and numbers of vanishing moments (Daubechies, 1992). 

 



Consider the standard univariate nonparametric regression setting yi = g(ti) + σ εi,  i = 1, . ., n, 

where εi are independent N(0, 1) random variables and the noise level σ may be known or 

unknown. We suppose, without loss of generality, that ti are within the unit interval [0, 1]. 

The goal is to recover the underlying function g from the noisy data, y = (y1, . . . , yn)T , 

without assuming any particular parametric structure for g. 

 
One of the basic approaches to handle this regression problem is to consider the unknown 

function g expanded as a generalised Fourier series and then to estimate the generalized 

Fourier coefficients from the data. The original (nonparametric) problem is thus transformed 

to a parametric one, although the potential number of parameters is infinite. An appropriate 

choice of basis for the expansion is therefore a key point in relation to the efficiency of such 

an approach. A ‘good’ basis should be parsimonious in the sense that a large set of possible 

response functions can be approximated well by only few terms of the generalized Fourier 

expansion employed. Wavelet series allow a parsimonious expansion for a wide variety of 

functions, including inhomogeneous cases. It is therefore natural to consider applying the 

generalized Fourier series approach using a wavelet series. 

 
The performance of the resulting wavelet estimator depends on the penalty and the 

regularization parameter λ. To select a good penalty function, Antoniadis and Fan (2001) and 

Fan and Li (2001) proposed three principles that a good penalty function should satisfy. In 

that, as regards to the choice of the penalty parameter λ in finite sample situations an optimal 

choice is important. Given the basic framework of function estimation using wavelet 

threshold and its relation with the regularization approach with penalties non smooth at 0, 

there are a variety of methods to choose the regularization parameter λ. Solo (2001) in his 

discussion of the paper by Antoniadis and Fan (2001) suggests a data based estimator of λ 

similar in spirit to the SURE selection criterion used by Donoho and Johnstone (1994), and 

provides an appropriate simple SURE formula for the general penalties studied in this review. 

Another way to address the optimal choice of the regularization parameter is Generalized 

Cross Validation (GCV). Cross validation has been widely used as an automatic procedure to 

choose the smoothing parameter in many statistical settings. The classical cross-validation 

method is performed by systematically expelling a data point from the construction of an 

estimate, predicting what the removed value would be and, then, comparing the prediction 

with the value of the expelled point. One way to proceed is to use the approach adopted by 

Jansen et al. (1997). It is clear that this is an area where further careful theoretical and 

practical work is needed. 
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