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EXTENDED ABSTRACT

Abstract

We suggest a method for deriving expert based stochastic population forecasts, by combining

evaluations of several experts and allowing for correlation among demographic components and among

experts. Evaluations of experts are elicited resorting to the conditional method discussed in Billari et

al. (2012) and are then combined resorting to the supra-Bayesian approach (Lindley, 1983) so to derive

the joint forecast distribution of all summary indicators of the demographic change. In particular, the

elicitation procedure makes it possible to elicit evaluations from experts not only on the future values

of the indicators and on their expected variability, but also on the across time correlation of each

indicator and on the correlation (at the same time and across time) between pairs of indicators. The

central scenarios provided by the experts on future values of each summary indicator are treated as

data and a likelihood function is specified by the analyst on the basis of all additional information

provided by the experts, such likelihood been parametrized in terms of the unknown future values

of the indicators. Therefore the posterior distribution, obtained on the basis of the Bayes theorem

and updating the analyst prior opinions on the basis of the evaluations provided by the experts, can

be used to describe the future probabilistic behavior of the vital indicators so to derive probabilistic

population forecasts in the framework of the traditional cohort component model.

1 Introduction

Population forecasts are strongly requested both by public and private institutions, as main ingredients

for long-range planning. Virtually all population forecasts are based on the cohort-component method,

so that the forecast of the population reduces to the forecast of the three main components of the de-

mographic change: fertility, mortality and migration. Traditionally official national and international

agencies derive population projections in a deterministic way: in general three deterministic scenarios
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are specified, low, medium and high scenarios, based on combinations of assumptions on vital indicators

and separate forecasts are derived by applying the cohort-component method. In this way, uncertainty is

not incorporated so that the expected accuracy of the forecasts cannot be assessed: prediction intervals

for any population size or index of interest cannot be computed. Yet the high-low scenario interval is

generally portrayed as containing likely future population sizes. In recent years stochastic (or proba-

bilistic) population forecasting has, finally, received a great attention by researchers. In the literature

on stochastic population forecasting, three main approaches have been developed (Keilman et al., 2002).

The first approach is based on time series models: for each indicator time series models are fitted to

past series of data and forecasts are obtained resorting to usual extrapolation techniques. The second

approach is based on the extrapolation of empirical errors, with observed errors from historical forecasts

used in the assessment of uncertainty in forecasts (e.g., Stoto, 1983). In particular Alho and Spencer

(1997) proposed in this framework the so-called Scaled Model of Error, which was used for deriving

stochastic population forecasts within the Uncertainty Population of Europe, (UPE) project. Finally,

the third approach referred to as random scenario defines the probabilistic distribution of each vital rate

on the basis of expert opinions. In Lutz et al. (1998), the forecast of a vital rate at a given future time

T is assumed to be the realization of a random variable, having Gaussian distribution with parameters

specified on the basis of expert opinions. For each time t in the forecasting interval [0, T ] the vital rate

forecast is obtained by interpolation from the starting known and final random rate. In Billari et al.

(2012) the full probability distribution of forecasts is specified on the basis of expert opinions on future

developments, elicited conditional on the realization of high, central, low scenarios, in such a way to allow

for not perfect correlation across time.

In this work we build on Billari et al. (2012) and suggest a method that makes it possible to derive

stochastic population forecasts on the basis of a combination of experts evaluations and accounting for

correlation across demographic components. Our proposal is described in the following section.

2 The Proposal

Since population forecasts by age and sex are obtained resorting to the standard cohort-component

method, the first issue to address is how to derive the forecast distribution of the three fundamental

components of the demographic change: mortality, fertility and migration. Our forecasting method is

expert based, in the sense that population forecasts strongly rely on evaluations elicited from the experts.

Different sources of information, if available, are mainly used to assess expert reliability and between-

experts correlations. For this reason, in order to involve experts in a simplified and direct way, we consider

standard indicators, summarizing the three components of the demographic change: Total Fertility Rate



for the fertility component, Male and Female Life Expectancies for the mortality component, Immigration

and Emigration. The joint forecast distribution of the demographic indicators is obtained, on the basis

of a combination of evaluations elicited from experts. The novelty of our contribution displays in the

way evaluations of experts are at first elicited and then combined: the evaluations are elicited resorting

to the conditional method discussed in Billari et al. (2012) and then combined resorting to the so-called

supra-Bayesian approach. The supra-Bayesian approach was introduced by Lindley in 1983 and used,

among others, by Winkler (1981) and Gelfand et al (1995) to model and combine experts opinions;

later, Roback and Givens (2001) apply it in the framework of deterministic simulation models. Such

approach makes it possible to combine experts opinions on unknown features of a phenomenon within

the formal framework provided by the bayesian approach to statistics, by assuming that such opinions

are data. The analyst is therefore asked to specify a likelihood function, to be parametrized in terms of

the unknown features. The posterior distribution, obtained by applying the Bayes theorem and updating

the analyst prior opinions on the basis of the evaluations provided by the experts, can be used to describe

the probabilistic behavior of the unknown quantities of interest.

In the following we describe how the joint forecast distribution of any two pair of indicators at two

different time points can be derived according to our proposal. It is worth emphasizing that the method

can be generalized so to consider more than two indicators and more than two time points, the only

additional difficulty being related to the elicitation process, that in the case of several indicators and

several time points becomes cumbersome. The entire joint distribution of the pair of indicators over the

considered forecasting interval can be obtained resorting to interpolation techniques.

Let us consider two indicators, denoted by R1 and R2 and let [t0 T ] be the forecasting interval.

Following Billari et al.(2010), we split the forecasting interval into two sub-intervals, by considering an

inner point t1 in [t0 T ] and we begin by deriving the distribution law of the vector of the values of

the indicators R1 and R2 at time t1 and t2, that is (R11, R12, R21, R22), Rij being the random variable

associated with the value of Ri at time j, i = 1, 2 and j = t1, t2, where t2 = T. Consider k experts and

assume that they are asked for central scenarios of the rates R1 and R2 at times t1 and t2. Let us denote

by xi = (xi1, xi2) the vector of central evaluations provided by expert i, on the pair of indicators at times

t1 and t2. Furthermore we can elicit, from each expert and for each single indicator, information on the

marginal variability of the evaluations at t1 and t2 and on the across time correlation. Moreover, we can

also elicit information on the correlation of the evaluations on the two indicators at the same time and

across time.

Following a supra-Bayesian approach, the experts central scenarios (x1, x2, . . . , xk) are treated as

data and the analyst is asked to specify the likelihood f(x1, . . . , xk|R11, R12, R21, R22). One possible



and natural choice, can be a gaussian model, that is to assume that the sample vector (x1, . . . , xk) is

the realization of a multivariate gaussian distribution of dimension 4k, centered at µ = (µ1, µ2, . . . , µk),

where µi = (R11, R12, R21, R22) and with covariance matrix given by:

Σ1 Σ12 · · · Σ1k

Σ21 Σ2 · · · Σ2k

· · · ·

· · · ·

· · · ·

Σk1 Σk2 · Σk


,

where for i = 1, . . . , k, Σi is the covariance matrix of the evaluations of expert i on the two indicators

R1 and R2 at time t1, t2; while, for i, j = 1, . . . , k i 6= j, Σij is made up by the covariances between the

evaluations of pairs of different experts at the same time and across time. Note that Σij = Σ′ji. Some com-

ments about such specification of the likelihood are needed. First, the choice of the normal distribution

can be primarily motivated by mathematical convenience; indeed, using gaussian likelihood computa-

tion of posterior quantities is greatly simplified. This is in fact a standard choice, reasonable unless

clear asymmetries are suspected on the distributions of the expert evaluations or significant associations

among experts’ different from linear are expected. Possible different choices for the likelihood are joint

distributions not normal, but having normal marginals (in this case, copulae can be a suitable option) or

having not normal marginals (for instance, multivariate Gamma densities can be considered). Second,

by assuming that the mean vector is equal to (R11, R12, R21, R22), the analyst states that he expects the

experts to be unbiased in their evaluations, excluding a systematic underestimation or overestimation.

The elements of the matrices Σi are specified by the analyst on the basis of the information available.

In particular, for each expert and for each indicator the marginal variances of the evaluations at time t1

and t2 along with the covariances across time can be specified on the basis of the information elicited

resorting the conditional method and the same is for the covariances at the same time and across time

of the evaluations provided by a single expert on the two indicators. As for the remaining elements of

Σ, the matrices Σij , in order to avoid an overparametrization of the model, considering that 4k data

are available, some assumptions on the structure of the covariance can be made. In particular, we can

assume that the correlations between the evaluations of any pair of experts at a given time are all equal

to ρ regardless the time, the pair of experts and the indicators considered, and that also the correlations

across time are all the same, and set them equal to ρt2−t1 . Under such assumptions, the analyst has

therefore to specify only the value of ρ in order to specify all the matrices Σij . Such correlation can be

determined by the analyst resorting to different sources of information, but in particular on the basis of



an in-depth study of the scientific production of the experts.

Under the assumption of a flat non-informative prior on (R11, R12, R21, R22), the Bayes theorem makes

it possible to derive the posterior distribution π(R11, R12, R21, R22|x1, . . . , xk), that can therefore be used

as the forecast distribution of value of the indicators R1 and R2 at t1 and t2. The posterior distribution

turns out to be gaussian distribution.

The suggested method will be applied so to derive stochastic forecasts of the components of the

demographic change for Italy from 2010 to 2065, on the basis of evaluations collected by means of a

questionnaire written and submitted by us to a group of Italian expert demographers. The results will

be shown and discussed.
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