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Abstract

Mixture probability density functions had recently been proposed to

describe some fertility patterns characterized by a bi-modal shape. These

mixture probability density functions appear to be adequate when the

fertility pattern is actually bi-modal but less useful when the shape of

age-specific fertility rates is unimodal. A further model is proposed based

on skew-symmetric probability density functions. This model is both

more parsimonious than mixture distributions and more flexible, showing

a good fit with several shapes (bi-modal or unimodal) of fertility patterns.

keywords: fertility rates, skew-symmetric, mixture distribu-

tions
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1 Introduction

It has been recently observed that patterns of fertility of some developed

countries show a deviation from the classical bell shaped curve. Some

countries, such as Ireland and UK, exhibit an almost bi-modal shape of

age-specific fertility rates that classical fertility models (see Hoem et al.,

1981) cannot adequately fit. This kind of pattern can be easily captured

by a mixture model, assuming that two populations with different fertility

patterns are mixed in one. Chandola et al. (1999) have proposed a mix-

ture Hadwiger model with seven parameters1. Another proposal has been

recently made by Peristera and Kostaki (2007) who first define a simple

model based on normal probability density function but having a different

variance parameter for ages before and after the mean age, and then a

normal mixture model with 6 parameters. Another proposal have been

made by Schmertmann (2003), who proposes a piecewise quadratic spline

function. The latter shows a very good fit with wide variety of fertility

schedules, but 13 parameters are needed to be estimated for this.

In this article a different solution is proposed, basing on the results on

skew-normal distribution and its generalization (Azzalini, 1985, 2005):

a 4 parameter model can be defined taking the skew-normal probabil-

ity density function, where the skewness parameter makes - if needed -

the function asymettric (as many fertility patterns). The Skew-normal

distribution can be generalized by adding a further parameter and thus

allowing a bimodal shape of the distribution. For instance, Ma and Gen-

ton (2004) call “Flexible Generalized Skew-Normal” (FGSN) a random

variable which pdf is defined by adding a new parameter to Skew-Normal

pdf, and can possibly have two modes. Therefore, such a model - which is

more parsimonious than those proposed by Chandola et al. (1999), Peris-

tera and Kostaki (2007) and Schmertmann (2003) - is potentially flexible

enough to exhibit a good fit both when fertility schedule is unimodal and

when it is bi-modal. This can be an advantage with respect to Chandola

et al. (1999) and Peristera and Kostaki (2007) mixture models, which

work reasonably well when the fertility schedule can be actually seen as a

mixture between two patterns, but look greatly over-parameterised when

it is unimodal and regular.

In the next section, we briefly review the existing models of age-specific

fertility rates, whereas in section 3 the skew-normal and skew-syimmetric

1Their initial proposal is a 6 parameter model, but Ortega Osona and Kohler (2000) pointed

out that an additional parameter is needed
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distributions are introduced and the model we propose is defined. In sec-

tion 4 we show how all these fertility models fit with some real data and

in section 5 we discuss upon the results.

2 Modelling fertility schedules

Following Hoem et al. (1981), a fertility curve can be written in the form

g(x;R, θ2, . . . , θr) = R · h(x; θ2, . . . , θr) (1)

where h(·; θ2, . . . , θr) is a probability density function on the real line

with r− 1 parameters and R is the r-th parameter representing the total

fertility rate (TFR). Several specifications of h(·; θ2, . . . , θr) are exposed

by Hoem et al. (1981) using the Hadwiger (inverse Gaussian), the Gamma,

the Beta, the Coale-Trussel the Brass and the Gompertz pdfs. Moreover

Hoem et al. (1981) define two further models based on regression spline

and polynomial functions. The model based on spline functions is that

giving the best fit to the data but this comes as no surprise, since ten

parameters are used. Among the models with fewer parameters the best

fit is given by the Gamma, the Coale-Trussel and in fewer cases by the

Hadwiger function.

Recently, it has been observed that these models are not adequate to

describe fertility pattern which are arising in some developed countries

such as UK, Ireland and US. In particular, a marked hump at early ages

has been observed in recent fertility patterns like that of Ireland and

showed in figure 1. This hump is even more marked when first order birth

are considered, (see Peristera and Kostaki, 2007). The above described

fertility models cannot describe such bimodal shape properly - they all

are unimodal functions - so if we want an accurate representation of these

new schedules, new models should be employed.

A first proposal in this sense, has been made by Chandola et al. (1999)

who define a “Hadwiger mixture model”. The original Hadwiger function

is

g(x;a, b, c) =
ab

c

(

c

x

) 3

2

exp
{

−b
2

(

c

x
+

x

c
− 2

)}

. (2)

Hoem et al. (1981) define the (2) in a slightly different way starting from

the Hadwiger pdf and adding the R parameter. However, this definition

is equivalent to that presented by Hoem et al. and if parameter a is

multiplied by
√
π we get an estimate of TFR (the R parameter according

Hoem et al. specification). The mixture model defined by Chandola et al.
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Figure 1: An example of fertility pattern with a marked hump at younger ages.

Source: Eurostat.

(1999) is therefore the following
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ab1

c1

( c1

x

) 3

2

exp

{

−b
2

1

(

c1

x
+

x

c1
− 2

)}

+

+(1−m)
ab2

c2

( c2

x

) 3

2

exp

{

−b
2

2

(

c2

x
+

x

c2
− 2

)}

(3)

where 0 ≤ m ≤ 1 is the mixture parameter, determining the sizes of

the two underlying populations. The number of parameters is necessarily

more than doubled with respect to the (2). The authors show that these

parameters can have a demographic interpretation.

Another proposal has been made by Schmertmann (2003) based on quadratic

splines

g(x;R,α, β, θ0, θ4, t0, t4) = R · I(α ≤ x ≤ β) ·
4

∑

k=0

θk(x− tk)
2 (4)

where I(·) is the indicator function, α and β the age limits, tk the spline

knots and θk the parameters. Thirteen parameters need to be estimated

in (4). Schmertmann (2003) also constructed a spline model with only

three index ages, thus reducing the number of parameters, but also this
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model is thought for fertility schedules with only one mode.

A further model has been proposed by Peristera and Kostaki (2007), bas-

ing on normal probability density function with a different variance pa-

rameter before and after the mean

g(x; c1, µ, σ11, σ12) = c1 exp

{

−
(

x− µ

σ(x)

)2
}

(5)

where

σ(x) =

{

σ11 if x ≤ µ

σ12 if x > µ

Parameter c1 is related to TFR whereas µ is the location parameter, σ11

and σ12 are the variances of the distribution before and after µ. Since the

(5) cannot capture a two-mode schedule, an extension of it is proposed by

Peristera and Kostaki:

g(x; c1, c2, µ1, µ2, σ1, σ2) = c1 exp

{

−
(

x− µ1

σ1

)2
}

+c2 exp

{

−
(

x− µ2

σ2

)2
}

(6)

which is basically a normal mixture model. A third models is suggested,

when fertility is stepeer in its left part of the first hump:

g(x; c1, c2, µ1, µ2, σ11, σ12, σ2) = c1 exp

{

−
(

x− µ1

σ1(x)

)}

+c2 exp

{

−
(

x− µ2

σ2

)}

(7)

where

σ1(x) =

{

σ11 if x ≤ µ1

σ12 if x > µ1

All the models outlined above are, with a varying degree, appropri-

ate with specific fertility patterns, but it seems that most of them are

not adequate for all (or at least the most common) fertility schedules. If

Schmertmann (2003) model does not have a good fit with bimodal fer-

tility patterns, Peristera and Kostaki (2007) and Chandola et al. (1999)

mixture models may not be adequate (too many and difficult to interpret

parameters) when the fertility pattern is unimodal.

3 Skew-normal and skew-symmetric dis-

tributions

In this paper, we propose to use a skew-symmetric distribution to fit

fertility schedules, and show that this solution is flexible enough for most
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fertility patterns, both unimodal and bimodal.

We start defining the skew-normal distribution whose pdf is as follows

f(x; ξ, ω2
, α) = 2ω−1

φ

(

x− ξ

ω

)

Φ

{

α

(

x− ξ

ω

)}

(8)

Properties of (8) have been studied by Azzalini (1985) and by other au-

thors. One interesting feature that has been demonstrated is that (8)

is unimodal (Ma and Genton, 2004). Moreover, it clearly appears that,

when α = 0, (8) reduces to a normal probability density function, which

is therefore included as a special case of (8). Figure 2 shows data from US
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Figure 2: USA Age-specific fertility rates (1963) fitted by several models.

Source: Human Fertility Database.

fertility in 1963 (data taken from Human Fertility Database (Human Fer-

tility Database)). The fit provided by the Skew-Normal density is rather

good (better than Gamma, Hadwiger, and Peristera-Kostaki ones) sug-

gesting this can be a good model for unimodal fertility schedules. Model

(8) can be generalized using the results exposed by Azzalini and Capi-

tanio (2003) and Azzalini (2005). In essence, for any symmetric pdf f0

and distribution function G with a symmetric density, the function

f(x) = 2f0(x)G {w(x)} (9)
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is a density function for any odd function w(·). if f0 = φ, G = Φ and

w(x) = αx we get the (8). This result can be used to define what Ma

and Genton (2004) call “Flexible Generalized Skew-Normal” (FGSN) dis-

tribution:

f(x; ξ, ω2
, α, β) = 2ω−1

φ

(

x− ξ

ω

)

Φ

{

α

(

x− ξ

ω

)

+ β

(

x− ξ

ω

)3
}

.

(10)

Ma and Genton (2004) prove that the pdf (10) can have - at most - two

modes and note that in general as the degree of the odd polynomial w(x)

increases the number of modes allowed in the pdf increases.

For our purposes, two possible modes are enough, so the (10) is a good

candidate to fit bimodal fertility schedules and this generalization is ob-

tained adding only one parameter to the (8). It can be easily shown that

if β = 0 we get again the (8), which is a special case of (10).
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Figure 3: Two examples of FGSN curves.

3.1 Interpretation of parameters

Before fitting the Skew-Symmetric distribution to real data and compare it

with other fertility models, we need to explore more in detail the meaning

of its parameters and their possible demographic interpretations. The

first two parameters (i. e. ξ and ω) are easier to interpret, as they are a

location (ξ) and scale (ω) parameters. It should be noted that ξ is not

the mean of the distribution (so it cannot be interpreted, as one might be

tempted to do, as the average age at childbearing) but it is a function of

it, as shown by Arellano-Valle and Azzalini (2008) for the skew-normal.
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Similarly, ω is not the variance of the distribution but it is proportional

to it.

Interpretation of α and β is more difficult: α is the skewness parameter

in the skew-normal distribution, if α = 0, but in the skew-symmetric

distribution β also contributes to skew the density function. These two

parameters are certainly related with the location of the mode (of the two

mode), but unfortunately we cannot derive this relation explicitly. We

therefore simulated many FGSN distributions keeping ξ and ω fixed and

making α and β varying between -5 and +5. For each combination of α

and β we look at the locations of the mode(s) and in this way we derive

an interpretation of parameters. From our simulations we basically can

say that:

• if α and β have the same sign, the resulting pdf has only one mode.

In some cases, the pdf shows a small “bulge” but this is never an

additional mode

• if α and β have opposite signs, the resulting pdf has two modes

• if the absolute value of β increases, the height of the second modes

increases

• the higher the absolute value of α the more distant the two modes

between them.

Figure 4 shows 9 the resulting pdfs of nine combinations of values of α

and β. Actually, α is kept fixed (α = 1) and β varies from 0 to −0.8.

In this way we can see how, as β decreases, the second mode increases.

The sequence might represent a situation in which the teen-age fertility

increases until it creates a second mode in the fertility curve. Basing on

these observations, we can draw some conclusions on the possible values

that the parameters of the skew-symmetric distribution may assume when

fitted with real fertility data.

First, we can expect that if a fertility schedule has an additional hump,

like that shown in figure 1, this will likely be not too pronounced. This

leads us to expect an absolute value of β not larger than one. Moreover,

the additional hump, if exists, will be located in the right side of the dis-

tribution, as this is generated by early-age fertility. As far as we know, it

is very unlikely to find an additional hump in the left side of the distri-

bution. Therefore we should expect a negative value of β and a positive

value of α. Further evaluations can be made by fitting this model to real

data.
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Figure 4: Examples of Skew-symmetric distribution with ξ = 28, ω = 8, α = 1

and varying values of β

4 Fitting fertility model to real data

Fertility models above described, together with other well-known fertil-

ity models, will be fitted to real data form several countries and years,

in order to make an evaluation of their quality. We do not consider

spline or polynomial models such as those described in Schmertmann

(2003) and in Hoem et al. (1981). They undoubtedly provide the best

goodness of fit in most of the cases, but, as also Hoem et al. (1981)

and Peristera and Kostaki (2007) highlight, the number of parameter

they use is too high and too difficult to interpret. We use data from

both countries that recently experienced a “bimodal” fertility schedule
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(e. g. USA, UK, Ireland) and countries that keep a classic fertility pat-

tern (e. g. Italy, Czech Republic). Data are taken from Human Fertility

Database Human Fertility Database (Human Fertility Database), Euro-

stat (http://epp.eurostat.ec.europa.eu/portal/page/portal/eurostat/home/)

and Istat (Italian Statistical Institute, see http://demo.istat.it/).

Parameters of fertility models are estimated through non-linear least squares,

by minimizing

S(R, θ2, . . . , θr) =
e

∑

x=b

{g(x;R, θ2, . . . , θr)− fx}2 (11)

where fx is the real age-specific fertility rate, g(x;R, θ2, . . . , θr) is the fer-

tility rate at age x given by the fertility model used, and s and e are the

ages at the beginning and at the end of the fertile period, respectively.

We first evaluate the performance of fertility models in a country show-

ing a classical (i. e. with no additional hump) fertility pattern. Italy is

among the countries with the lowest rate of teenage fertility and is there-

fore suited for this first test.

Figure 5 shows the sum of squared residuals of models that have been
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Figure 5: Sum of squared residuals of Fertility models fitted to Italy data (1952-

2003)

10



considered, with respect to Italian fertility data since 1952 up to 2003.

In these years, Italian fertility has become of lower intensity (TFR was

2.337 in 1952 and 1.328 in 2003) and mean age at childbearing decreased

until the end of 1960s’ and increased. Looking at figure 5, it appears that

Gamma, Hadwiger and Skew-normal models have a similar pattern but

Skew-normal model has almost always a better fit (i. e. a lower sum of

square of residuals) especially after 1990, when the shape of Italian fer-

tility pattern starts to become more and more symmetric and therefore

more and more similar to a normal distribution. As we said, this is a spe-

cial case of the skew-normal model (α = 0) whereas it is not possible for

Gamma and Hadwiger models to become symmetric. Peristera-Kostaki

models show a good fit, but the mixture model does not improve a lot the

fit of the simplest model. Actually, in some years the mixture model has

a slightly worse fit than the simple one. The fit provided by the Hadwiger

mixture model is better than that of simple Hadwiger model, although in

the first years is worse than Peristera-Kostaki, Skew-Normal and FGSN

models.

We fit the same models to fertility data of USA, where, in the last years,

a bimodal shape of age pattern has been detected. From the Human Fer-

tility Database we can get fertility data of USA since 1933 up to 2006.

In this time span, the age pattern has become less skewed, even though a

perfect simmetry has not been reached as occured in Italy. In addition, in

the last twenty years, a bimodal shape has appeared, as noticed also by

Peristera and Kostaki (2007). Figure 6 shows the sum of squared resid-

uals of models that have been considered, with respect to USA fertility

data since 1933 up to 2003. The figures is similar to figure 5 but with

significant differences. First, as for figure 5, at a certain point (around

1980) the squared residuals of Gamma and Hadwiger models increase,

but this time this is not due to the fact that fertility pattern is becoming

symmetric. The reason is that a second hump appears and the Gamma

and Hadwiger models are not able to catch it. Also the skew normal

and Peristera-Kostaki models are no appropriate fot this shape of fertility

rates, and indeed their residuals follow those of Gamma and Hadwiger

models. Conversely, the second hump is catched by the mixture models

(those proposed by Peristera and Kostaki and that proposed by Chandola

et al.) and by the FGSN model, and their residuals does not diverge from

the values before 1980.
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4.1 Intepreting parameters

The quality of a fertility model does not depend only on the goodness of

fit with real data. Goodness of fit is certainly important, but a good fer-

tility models also need to provide a useful demographic intepretation of its

parameters and their values. This is a particularly necessary feature when

the fertility model is used for forecasting. An useful demographic interpre-

tation of parameters can be drawn if their value follows a sensible trend

over time, if this does not happen the model is not well specified, at least

not for every year the model has been fitted. This is something we have to

bear in mind when examining the behaviour of the models outlined before.

In appendix we reported the values of parameters of Hadwiger mixture,

Peristera-Kostaki mixture and FGSN models fitted with Italy and USA

fertility data. By examining these figures, we see that for Italy fertility

the FGSN and Peristera-Kostaki mixture models are well specified. All

the parameters follow a clear trend without discontinuities, with the ex-

ception of β parameter which trend has a discontinuity around 1990.The

Hadwiger mixture model, instead, seems to be not suited for Italy data:
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in particular, two parameters (a and c1) remain constant with a jump

around 1970. The trend of FGSN parameters tell us that between 1950

and 2003 Italian period fertility has experienced a decreasing intensity (see

R parameter) an increasing mean age at childbearing (see ξ parameter)

a decreasing heterogeneity (ω) and a “symmetrization” (α falls from 4 to

0). β has increasing trend that needs a more detailed explanation. The

fertility pattern of Italy in the fifites (not shown here) shows a significant

fertility levels of women aged 30-40. This fertility is not strong enough to

create an addiotnal “hump” to the fertility curve but it makes the slope of

the second part of the curve smaller. This “late” fertility rapidly declines

and this is what generates the trend of β.

For USA data we notice that the behaviour of FGSN and Peristera-

Kostaki mixture models parameters is similar to that of Italy. The Had-

wiger mixture model parameters do not follow a smooth trend in the first

part, but since the 1980s we get a smooth (and interpretable) trend. This

behaviour suggests us that the Hadwiger mixture model is a good model

when a mixture of fertility behaviours emerges from real data, otherwise

it becomes an overparameterised (and possibly not identified) model. The

Peristera-Kostaki mixture model shows a smoother trend of its parame-

ters over time. Actually, there is a discontinuity around the eighties but

this is an actual discontinuity of fertility data. Indeed, we find a similar

discontinuity in the trend of FGSN parameters. From figure 10 we see

that in USA the mean age at chidlbearing has constantly increased since

1932 while the variance has decreased. The distribution of births has be-

come more and more symmetric over the years and, more importantly,

the trend of β parameter shows that in the last years an additional mode

has emerged, a result that was highly expected.

5 Conclusions

In this paper a new fertility model has been proposed, basing on a gen-

eralization of the skew-normal distribution (the FGSN model). This gen-

eralization allows to detect additional humps that may arise in a fertility

distribution as recently has happened in some English-speaking countries.

The advantage of the FGSN model is that it is very flexible so that it has

a good fit when the fertility pattern is complex (e. g. in several English-

speaking countries there is an additional hump at younger ages, due to a

high level of teen-age pregnancy) but it is not overparameterised when the
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fertility pattern is relatively simple (e.g. in Italy where there is no addi-

tional hump). The Hadwiger mixture model is not that flexible, showing a

particularly good fit when the fertility pattern is complex, but being over-

parameterised when the pattern is relatively simple. The main problem

is that the Hadwiger mixture model does not seem adequate when in the

true data there is no mixture at all. In this sense, the Peristera-Kostaki

mixture model works better. It should be noted that the latter is not

actually a mixture model – and this is probably the reason for which the

model works even when there is no mixture in the true data – but in these

cases it is difficult to give a sensible intepretations to its parameters.

It should be also noted, however, that the parameters of FGSN model

are not of immediate interpretation, and a reparametrization should be

considered. The location parameter is not the mean (but of course it is

strictly related to it) and, at the same way, the scale parameter is not the

variance so it is difficult for a demographer to say what is a reasonable

value of such parameters for a given country. There exists a reparametriza-

tion of the skew-normal distribution in which the new parameters are the

mean, the variance and the skewness of the distribution (Arellano-Valle

and Azzalini, 2008). A possible extension of this work is finding a similar

reparametrization for the FGSN distribution in order to have a fertility

model with the same flexibility but with parameters easier to intepret.
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Figure 7: Trends of parameters estimated from the FGSN model. Italy (1952-

2003)
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Figure 8: Trends of parameters estimated from the Peristera-Kostaki mixture

model. Italy (1952-2003)
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Figure 9: Trends of parameters estimated from the Hadwiger mixture model.

Italy (1952-2003)
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Figure 10: Trends of parameters estimated from the FGSN model. USA (1933-

2006)
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Figure 11: Trends of parameters estimated from the Peristera-Kostaki mixture

model. USA (1933-2006)
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Figure 12: Trends of parameters estimated from the Hadwiger mixture model.

USA (1933-2006)
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