Intergenerational Correlations of Health Among Older Adults: Empirical Evidence from Indonesia

Younoh Kim ${ }^{1}$
Bondan Sikoki ${ }^{2}$
John Strauss ${ }^{1}$
Firman Witoelar ${ }^{3}$

September 2011
${ }^{1}$ University of Southern California
${ }^{2}$ Survey Meter
${ }^{3}$ World Bank

Suggestions from Eileen Crimmins, Richard Easterlin, Roger Moon, Jeff Nugent and James P. Smith are greatly appreciated.

Abstract

It is widely believed that family background has a significant influence on children's life. The vast majority of the existent literature has focused on the relationship between parents' education and income and the education and income of their children. Surprisingly, however, much less work has been done on the intergenerational transmission, or correlations of health. The main objective of this paper is to examine the correlations of health across generations using the Indonesia Family Life Survey (IFLS). We take advantage of the richness of IFLS and examine several health measures of respondents, including self-reports and biomarkers. As measures of health of both parents, IFLS has information on whether they are dead at the time of the last wave in 2007, their general health status and whether they have difficulties with any ADLs at the time of the survey or just before death. The findings suggest strong intergenerational correlations between the measures of parental health, schooling, and the health of their adult children. We also examine how these intergenerational correlations might change for respondents born in the more developed parts of Indonesia compared to the less developed areas. Interestingly, these health associations are much lower for respondents who were born in Java or Bali. These are areas of Indonesia that have experienced the most rapid economic growth over the past 40 years. This suggests that being born and growing up in developed areas, which may have better health infrastructure, substitutes for the influence of parental health.

1. Introduction

It is widely believed that family background has a significant influence on children's life. For instance, Bowles et al. (2002) show that economic status is transmitted from parents to offspring and moreover, the extent of intergenerational transmission of economic status is considerably greater than what people generally thought it to be a generation ago.

The vast majority of the existent literature has focused on the relationship between parents’ education and income and the education and income of their children. Surprisingly, however, much less work has been done on the intergenerational transmission of health. Health is regarded as an important part of human capital. Better health makes people more productive, and in turn may increase future earnings whereas poorer health causes low productivity, lower happiness and more expenditure on medical care, leading to reduced income and less opportunities for wealth accumulation. Therefore, it seems reasonable to extend our research interest towards dimensions of health.

The main objective of this paper is to examine the correlations of health across generations using the Indonesia Family Life Survey (IFLS). The IFLS is a panel survey covering 14 years from 1993 to 2007 and collects extensive information at the individual, the household, and the community level, including indicators of economic and non-economic well-being. In particular, the survey contains a rich set of information on health outcomes of respondents, including both biomarkers and self-reports. IFLS is a well suited data set for our research because it includes detailed information about parents even if they live apart from their children and the information is collected either at the time of the survey or just prior to death if they are dead. IFLS thus allows us to capture the latest health information of each parent. These parental health variables, together with measures of parent's education, are used in this paper as covariates to explore the
intergenerational correlations of health with health measures of older respondents, while controlling for age and birth district of the respondent.

We take advantage of the richness of IFLS and examine several health measures of respondents, including self-reports and biomarkers: a measure of self-reported general health status; the number of measures of physical function and activities of daily living (ADLs) that the respondent reports having difficulty in conducting; the number of instrumental activities of daily living (IADLs) the respondent reports having difficulty with; a measure of cognition measured by word recall; hemoglobin; total and HDL cholesterol; hypertension; an index of depression (the 10 question CES-D) and body mass index (BMI).

As measures of health of both parents, IFLS has information on whether they are dead at the time of the last wave in 2007, their general health status and whether they have difficulties with any ADLs at the time of the survey or just before death.

To focus on older adults, the sample is restricted to respondents who are 50 years and older in 2007. This paper uses multivariate analysis in two ways in order to examine the intergenerational transmission of health. First, a cross-sectional analysis is employed by using the information from IFLS4; this allows us to investigate the maximum number of health outcomes. Dependent variables, in this case, are the measures of respondent health status measured in 2007. Second, a simple growth model is used with changes in a restricted number of health measures from 1993 to 2007 as outcome variables (changes between 1997 and 2007 are used in the cases for which 1993 data are not available but 1997 data are). These growth or change regressions are estimated for respondents who were 50 and above in 2007 and interviewed for both 1993 (or 1997) and 2007.

Having parental health variables and schooling as right-hand side variables along with respondent's age at baseline enables us to look at the intergenerational correlations with the levels of health measures as well as for the changes in health. We are careful not to interpret these relationships as necessarily causal, because there exist the usual issues of omitted variables and possibly measurement error in parental health. Thus we cannot identify the exact pathways that may explain these correlations. If an elderly parent is still alive, for instance, this is an indication that that parent has had good health, which may well have indeed been transmitted to the respondent. However many other factors may be associated with this as well, such as a good health and nutrition environment when the respondent was young or good health behaviors of the respondent as a child and as an adult, which may partly have been influenced by health behaviors of the parent. On the other hand, a parent having survived to 2007 also will be correlated with high levels of SES of the parent, which may have different effects on respondent health. Still, given the dearth of estimates of intergenerational correlations of health, we think that these findings make a useful first step contribution to the literature.

The findings suggest strong intergenerational correlations between the measures of parental health, schooling, and the health of their adult children. For example, if parents had more difficulties with ADLs, their children are more likely to have the same problem when they become older adults. Having a dead father is associated with increases in the number of ADLs and IADLs that women report having problems with, a higher likelihood of being underweight for women, as well as with lowered cognition for women. Having a dead mother is correlated with a greater likelihood of having hypertension and being underweight for both men and women, having hemoglobin level below the threshold for men, and also with reporting poor health for women.

The health correlations are stronger in magnitude for the cross-sectional analysis using the 2007 wave than are the changes between 1993 (or 1997) and 2007. This suggests that the intergenerational influences are already established by the time the respondents are 36 years and over in 1993 (or 40 and over in 1997).

We also examine how these intergenerational correlations might change for respondents born in the more developed parts of Indonesia compared to the less developed areas. Interestingly, these health associations are much lower for respondents who were born in Java or Bali. These are areas of Indonesia that have experienced the most rapid economic growth over the past 40 years, but that were also more developed than other areas of the IFLS sample in the past (Dick et al 2002). This suggests that being born and growing up in developed areas, which may have better health infrastructure, substitutes for the influence of parental health. Finally, we examine the relationship between concurrent SES factors of the respondent, and health, and how those relationships change when adding the parental health and schooling factors. We find very similar relationships between better SES and better health as are usually found, which largely remain after controlling for parental health and schooling.

The rest of the paper is organized as follows. Section 2 provides a brief review of the related literature. Data description and the empirical specification used are described in section 3. The main regression results are discussed in section 4 . Concluding remarks follow in section 5.

2. Literature Review

Although there are numerous studies which analyze the intergenerational correlation of earnings, wealth or education, a limited number of studies exist that examine intergenerational correlations of health. Most of this research has concentrated on the impact of early childhood health or even fetal health on health later in life. A leading theory to explain the association between one's health in early life and later health has been the "Barker hypothesis". According
to this theory, organ sizes or function, gene expression as well as metabolism may adapt to a new environment in order to raise survival probabilities, when faced with negative shocks or alterations in nutrition during very early childhood or the fetal period. This adaptation might be beneficial for short-term survival during famine but can cause health problems later in life. (Barker et al., 1989; Fogel, 2004; Komlos, 1994)

Godfrey and Barker (2000) show that several of the major diseases of later life, including coronary heart disease, hypertension, and type II diabetes are correlated with under-nutrition during the fetal period. In particular, longitudinal studies of 25,000 British subjects found evidence that birth size is highly associated with disease occurrence in later life. People born small or disproportionate like having a big head with short arms seem to have a higher likelihood of having coronary heart disease, high blood pressure, high cholesterol concentrations, and abnormal glucose-insulin metabolism. This paper also suggests that the timing of nutrition insults during pregnancy is important. For instance, people tend to have higher risk of having hardened arteries in their mid-life if their mother had poor nutrition during the period when arteries form in the fetus. As is well known, this and related studies might not reflect the true correlation of health transmission since other factors such as one's lifestyle as an adult (smoking and drinking behaviors) or shocks in early life (exposure to natural disasters, bad weather or economic crisis) can affect later health as well.

Another theory of association between early and later health is proposed by Crimmins and Finch (2004). The "cohort morbidity phenotype hypothesis", a complementary theory to the Barker hypothesis explains that inflammation caused by infectious diseases in early life increases the risk of later life morbidity and mortality. In particular, invasion of pathogen or internal tissue injury during early childhood may induce inflammatory responses and the high levels of
inflammation lead to the development of atherosclerosis, which in turn possibly causes cardiovascular disease. They also suggest that retarded growth in the birth period can be interpreted as a fetal adaptation to mal-nutrition, consistent with the Barker hypothesis, as well as with the consequences of being exposed to infection.

Using aggregated data by birth cohort from four northern European countries before the $20^{\text {th }}$ century, Crimmins and Finch (2006) examine the impact of early mortality on later mortality. Specifically, they regress the changes in mortality between age 70 and 74 years on the changes in mortality at different states of childhood simultaneously for the same birth cohort and find significant correlations for all countries. According to the authors, several infectious diseases were the main cause of infant and childhood mortality whereas most of adult mortality was caused by chronic diseases, especially heart disease at that time. Hence, strong correlations between early and later mortality rates can be interpreted as the link between childhood inflammations and heart problem in later life.

James P. Smith et al. (2009) use the China Health and Retirement Longitudinal Study (CHARLS) to look at the correlations between childhood general health status before age 16 (retrospectively obtained), adult height (used as a measure of childhood height, and health) and adult health outcomes. Later outcomes include GHS, the number of ADLs and separately IADLSs that respondents report having difficulty in performing, subjective expectation of mortality, low and high BMI, cognition, depression, health behaviors such as smoking, drinking and physical activity, and SES measures such as education, household per capita expenditure and wealth. They find that women's later health status is strongly correlated with childhood general health, while men's BMI and mortality expectation are as well. In an earlier study with US data, Smith (2009) using the PSID, examined the impact of prospective childhood health on adult SES
outcomes, including levels and trajectories of education, family income, household wealth, individual earnings and labor supply. Smith's analysis was conducted with a panel who were originally children and are now well into adulthood. With the exception of education, Smith reports that poor childhood health has a large effect on all outcomes with estimated effects larger when unobserved family effects are controlled for using family fixed effects.

The point is that respondents' health in very early childhood is strongly correlated with parental characteristics, which represents an indirect link between the socio-economic (SES) characteristics of parents and the health of their children later in life through their children's health in early life stages. Direct evidence on the links between respondent health as a child and health of the parents when they were children exists, but is not abundant. Using data from British National Child Development Study in 1958, Emanuel et al. (1992) demonstrate that infant's birth weight is positively correlated with mother's birth and non-pregnant weight. Thomas et al. (1990) show that mother's height is positively correlated with child survival in Brazil, controlling for mother and father schooling and household resources. Almond and Chay (2006) use difference in difference regressions to compare maternal health and birth outcomes for black and white women born in the late 1960s to those born in the early 1960s. They suggest that due to the federal antidiscrimination effort, black women born in the late 1960s are healthier and in turn, they are less likely to deliver babies with low birth weight and low APGAR scores as compared to those born earlier.

However, direct evidence on the links between health of older adults and health of their parents when they were older is very scarce. Few papers discussed above, show that intergenerational correlations exist but it is still uncertain as to whether these impact will prevail even when their children become older adults. A recent study by Maccini and Yang (2009), for
instance, examines the influence of weather conditions at birth time on health, schooling completed and socioeconomic outcomes in later life. Specifically, adult outcomes from Indonesia Family Life Survey are linked to historical rainfall data which were specified for the individual's birth-year and birth-district. Their results find that higher rainfall in early life has a large positive effect on adult outcomes for women but not for men. They do not look at the question of this paper: whether parental health status continues to be associated with children's health even when the children become old.

3. Data and Empirical Specification

3.1. Indonesia Family Life Survey (IFLS)

This paper uses the data from the 1993, 1997, 2000 and 2007 waves of the Indonesia Family Life Survey (IFLS). This is a large-scale socio-economic survey conducted in Indonesia which contains extensive information collected at the individual, the household and the community levels. The survey includes not only indicators of economic but also non-economic well-being such as consumption, income, education, assets, migration, fertility, use of health care, health insurance, marriage, kinship among family members and labor market outcomes (see Strauss et al., 2009).

IFLS fits the purpose of this paper since it collects a rich set of information on health outcomes including biomarkers and self reports for both respondents and their parents. IFLS contains detailed information of parental health such as whether they had ADL problems and they were in a poor health condition before their death if they are dead, or at the time of the survey.

For the growth model, changes in health measures from 1993 to 2007 (or 1997 to 2007, depending on health measures) are used as dependent variables and respondents who are
available in both wave 1 and wave 4 are chosen in the sample. Any longitudinal study like this comes with a potential worry: sample attrition. Fortunately, the attrition rate in IFLS is very low compared to other panel data sets. In particular, 7,224 households were interviewed and detailed individual level information was collected from over 22,000 respondents in IFLS1, conducted in 1993. The re-contact rate was 93.6% of original IFLS 1 households in IFLS 4. Overall, among IFLS 1 original respondents over age 15 in 1993 who were still alive, 88% of them were recontacted in IFLS4. Among age groups, the highest re-contact rates (over 90\%) are for those who were older than 40 years in 1993 (see Thomas et al., forthcoming, for details).

It has been challenging to find direct evidence of health transmission between parents and their adult children because it requires well designed survey data having detailed health information of both parents and children. IFLS is very attractive because several variables are available to measure the latest health information of each respondent's biological mother and father. In examining the relationship between parental health and their adult children's health, multivariate regression is used in two ways; cross-sectional analysis and a growth model.

In both sets of estimates, parental characteristics are treated as time-invariant characteristics. This paper focuses on adults who are older than 50 years and it means their parents are at least 65 years and older in the sample. Since IFLS is a longitudinal study, it collects very detailed information of parental health in each wave. Health information from the 2007 wave is available for those who are still alive and even if they have passed away as IFLS collects the information as of just before their death. If respondents do not live together with their parents, it is respondents (adult children) who are interviewed about the health status of their biological mother and father (see Table A2 for the questions). In IFLS4, respondents are asked about the current health status of their non-coresident parents if their parents are still alive or the latest
health status if parents died before 2007. Therefore, for non-coresident parents, the health information collected from their adult children in IFLS4 is used to construct parental variables. For parents who live together with their children, parents are directly interviewed about their health status. If they are alive in 2007, the health information from IFLS4 is used but if they died between the surveys, the information from the last wave they are found alive is used. ${ }^{1}$

Specifically, dummy variables are created for being dead in 2007, difficulties with ADLs and general health status (GHS) at the survey, or just before death. The parents' death dummy variables, one for each biological parent, are equal to 1 if the parent was dead at the time of IFLS 4 , in 2007. In the sample, only 5% of the fathers and 16% of the mothers were still alive at the time (Table A1), so this dummy variable indicates a particularly healthy parent if it is 0 . We also know the date of death for many of those who died. Hence we also tried dummies for death before age 60, death after age 60 , and died but age of death missing. These turned out not to be significantly different from each other, ${ }^{2}$ so in the main specifications we use the dummies for death.

A dummy variable for a measure of general health status of each parent is also constructed. It equals 1 if the parent is reported to be in poor heath in 2007 or right before their death if they are dead; about half for both mothers and fathers (Table A1). For difficulties with ADLs, the dummy variable takes value 1 if the parent experienced problems with any ADL in 2007 or before they died; about one-quarter for both mothers and fathers. The level of schooling of each parent is controlled by creating dummy variables for each level completed: primary and junior

[^0]high school and above, no schooling being the omitted category. About 45% of fathers are reported to have had no schooling and about 60% of mothers (Table A1). A little less than 20% of mothers are reported to have completed primary school or more, while about 30% of fathers have.

One might imagine that health just prior to death is worse and not necessarily representative of health earlier in life. This appears to be true in our data. Table A3 shows the distribution of the GHS variable separately for mothers and fathers who are still alive and those dead. The distributions are different, worse for those parents who are dead (a chi-square statistic of differences are 40.7 for fathers and 47.5 for mothers; both are significant at under .01). Because of these differences, we allowed for in our empirical specifications, interactions between the mother (or father) dead variable with the mother (or father) GHS variable. It turns out, however, that these interactions are not jointly significant, ${ }^{3}$ so they are not reported in our main specifications.

As mentioned above, several health measures which are known to be very important for elderly health are used as dependent variables in this paper. The first one captures measures of physical functioning and activities of daily living (ADLs). It is defined as routine activities that people tend to do every day such as eating, bathing, dressing, toileting, transferring, and continence. Listed in the questionnaire are also physical functioning activities such as carrying a heavy load for 20 m , walking for 5 km and standing from sitting from the floor without help. In IFLS, respondents are asked whether they can do those activities related to ADLs or physical functioning without any help or difficulties. For this analysis, each answer is recorded as 1 if respondents report that they can do them only with some assistance or not able to do it. In the

[^1]regression, the sum of the number of difficulties with ADLs is used as an outcome variable; the maximum number of ADL problems that each respondent can have is 9. As shown in Table A1, the mean is 1.79 for women and 1.04 for men.

The second health measure used in the analysis is instrumental activities of daily living (IADLs). While it is not necessary for fundamental functioning, it is still required to be able to live one's life independently. In the questionnaire, respondents answer if they can do particular activities related to IADLs without any difficulties. To shop for personal needs, to prepare one's own meal, to take a medicine and to travel are some examples. Similar to the case of ADLs, each answer is scored as 1 for those who answer that they need help or cannot do any of those activities. Like before, the sum of these values is used in the regression; the means are 1.0 for women and 0.55 for men (Table A1).

General health status (GHS) is also one of the health measures examined in this paper. It is scored as very healthy, somewhat healthy, somewhat unhealthy or unhealthy. For this paper a value of 1 is scored if respondents report their health status as 'somewhat unhealthy' or 'unhealthy', 0 otherwise. Some 29% of women and 23% of men report being in poor health.

The fourth health measure is body mass index (BMI, $\mathrm{kg} / \mathrm{m}^{2}$). Following World Health Organization standards, dummy variables are created for being underweight if BMI is under 18.5 and for overweight if BMI is greater or equal to 25 . Increasing overweight has become a problem for the elderly in Indonesia, especially for women (see Witoelar, Strauss and Sikoki, forthcoming for details). Table A1 shows that 30% of women over 50 in 2007 are overweight, and 17% of men. Yet underweight is still a problem, for 20% of men and women.

Hypertension is measured following the standard definition of the World Health Organization; its value is 1 for those whose systolic is greater than or equal to 140 or diastolic is
greater than or equal to 90 . In IFLS4, blood pressure of each respondent is measured 3 times and the mean of the last two measurements is used as dependent variable in the estimation. For earlier waves of IFLS, blood pressure was measured only once. 63% of elderly women and 52% of elderly men have hypertension in 2007 (Table A1).

Hemoglobin levels are examined from blood spots, using the Hemocue meter, as are total and HDL cholesterol, using the Cardiochek PA meter (non-fasting). A dummy variable is created as equal to 1 for those whose hemoglobin level is below the threshold (for men: $13 \mathrm{~g} / \mathrm{dL}$, for women: $12 \mathrm{~g} / \mathrm{dL})^{4}$. Some 35% of women and 30% of men have low hemoglobin in $2007 .{ }^{5}$ For total cholesterol we create a dummy equal to 1 if the respondent has high total cholesterol ($>=240 \mathrm{mg} / \mathrm{dL}$) and for HDL the dummy equals 1 if the level is low ($<40 \mathrm{mg} / \mathrm{dL}$). High total cholesterol is 23% among women but only 11% among men, however low HDL is a very big problem, for 39% of women and 65% of men (Table A1). ${ }^{6}$

For cognition, respondents are read a list of 10 simple nouns (i.e. hotel, car or apple) and they are immediately asked to repeat as many words as they can, in any order. After answering questions on depression (after several minutes), they are asked again to repeat as many words as they can. We follow McArdle (2010) and use the average number of correctly immediate and delayed recalled words. The average number of correctly recalled words is 3.22 for women and 3.56 for men (Table A1).

As a measure of depression, respondents answered 10 questions about how they felt during the week before. It is a self-reported depression scale from the short version of the CESD scale, an often used index internationally. The frequency of depression can be chosen from 4

[^2]levels: rarely, some days (1-2 days), occasionally (3-4 days) or most of the time (5-7 days). Following the standard way of computing CES-D, 0 is scored for those who answered 'rarely', 1 for 'some days', 2 for 'occasionally', and 3 for 'most of the time'. Eight out of 10 questions have a negative theme such as "I feel depressed" or "I feel lonely" and the remaining two questions reflect positive feelings such as "I am happy" or "I feel hopeful about my future". For the positive questions, the scoring is reversed from 0 for 'most of the time' to 3 for 'rarely'. The sum of all scores is used for the analysis and a higher score on the CES-D scale indicates that respondents are more likely to have depression; means are 4.56 for women and 3.90 for men (Table A.1).

3. 2. Empirical specification

The parental health and education variables are used as right-hand side covariates to explore the health of their adult children, who are 50 years and older in 2007. The equation estimated is:
$H_{i, 07}=\beta_{0}+\beta_{1}$ Parental char $_{i}+\beta_{2}$ Age $_{i, 07}+\gamma$ Birth district $_{i}+\varepsilon_{i, 07}$

The latest health status measures of respondents measured in the $4^{\text {th }}$ wave of IFLS are dependent variables in this equation.

Other covariates include dummy variables created for respondent's age: 60-64, 65-69, 70-74, 75-79 and 80 and over. These are necessary because health is highly age dependent and parental characteristics also are correlated with respondent age since respondent age reflects their birth cohort. Indonesia has developed rapidly during the past few decades which in turn led to birth cohort being highly correlated with parental characteristics. For instance, it is more likely that parents of younger respondents had more opportunities for having higher education or faced
better health infrastructure. Hence, controlling for respondents' age helps to address the potential association between birth cohort and parental characteristics such as health and education.

The birth district (kabupaten or kota) of the respondent is also controlled for with dummy variables. ${ }^{7}$ These dummies will control for contextual factors like prices, health conditions and health infrastructure at birth that affect respondent's health during childhood. ${ }^{8}$

In order to examine the period when these intergenerational correlations are actually established during one's lifetime, a growth model is estimated. For number of difficulties with ADLs, general health status (GHS) and body mass index (BMI), changes in health measures from 1993 to 2007 are constructed as outcome variables. For the other measures such as hemoglobin and hypertension, changes between 1997 and 2007 are used, because IFLS has collected this information only since 1997. Similar to the cross-sectional analyses, the sample is restricted to those who are 50 years and older in 2007 and only respondents who were interviewed in both the 1993 (or 1997) and the 2007 waves are kept in the sample. The growth model is

$$
\begin{equation*}
H_{i, 07}-H_{i, 93(97)}=\beta_{0}+\beta_{1} \text { Parental char }_{i}+\beta_{2} \text { Age }_{i, 93(97)}+\gamma \text { Birth district }_{i}+\varepsilon_{i, 93(97)} \tag{2}
\end{equation*}
$$

[^3]We also investigate if there is any difference in intergenerational correlations between those who were born in more developed areas and in less developed areas. For this purpose a dummy variable is created as equal to 1 for respondents who were born in Java, Jakarta, Yogyakarta or Bali (Java dummy) and that is interacted with the parental variables in the equation (1).

Furthermore, we examine the associations between parental SES markers and two important measures of human capital accumulation: attained adult height and years of completed schooling of their adult children.

Finally, in a separate specification, respondent's education and own height are used as covariates for their later health. These are standard proxies to represent the respondent's own SES but they may be argued to be endogenous. Examining the association between one's health and SES is standard and therefore, adding parental variables in this specification enables us to compare if parents' health variables still remain significant and if respondent's SES is significant as well.

It should be noted that the estimates in this paper are not necessarily causal, but they are certainly highly suggestive.

4. Results

4.1. Intergenerational Correlations

Table 1 presents regression results from the 2007 cross-section (equation 1) for the different health measures. For each outcome, the coefficients of parental characteristics and respondents' age are presented, respectively for men (first column) and women (second column). ${ }^{9}$ All equations include the birth district dummy variables in order to control for any heterogeneous characteristics of communities at birth. It is possible that respondents who were

[^4]born in more developed areas had better health infrastructures or facilities and controlling for birth place helps to address this issue. To investigate this issue further, the Java-Bali birth province dummy is used later as an interaction term with all of the parental characteristic variables. F-tests for groups of variables, such as the parental health variables, are reported at the bottom of each table.

For many of the health measures the results suggest that there exist intergenerational correlations between the measures of parental health and schooling, and the health of their adult children. For instance, having a father with poor general health status is associated with increases in the number of difficulties of ADLs for men. For women, if the father is dead in 2007 or had ADL problems in 2007, or right before he died, she is more likely to report difficulties in ADLs. For poor general health status, if a father was in a poor health condition, his children are more likely to suffer from the same problem when they become older adults regardless of their sex. Mother's poor health is positively related to men's poor health status whereas having a dead mother is correlated with poor health for female respondents. In the male sample, poor GHS of both parents is related to the increase in number of difficulties with IADLs. Female respondents tend to report more difficulties in IADLs if either parent were dead, if the father had ADL problems, or if the mother had poor general health status.

Men tend to be underweight if the mother had died by 2007, while having a dead mother or a father is positively associated with higher likelihood of being underweight for women. For being overweight, the correlations with parental health are not significant for men, and are at the 10% level for women. For women parental death has the opposite signs as for being underweight, which means that in this case, parent's being dead is negatively associated with a woman being overweight; this is reversed for women whose mothers have ADL problems.

Having low hemoglobin is not correlated with our parental health variables for women, but is for men; in particular, having a dead mother is positively associated with having low hemoglobin. Having a dead mother is associated with a higher likelihood of having hypertension for both men and women, although all the parental health variables jointly are not significant. Our parental health variables are also not jointly significant for either having high total cholesterol or low HDL. ${ }^{10}$

For cognition for women, however, and depression scores for both men and women, parental health is jointly significant at 10% or better. Having a dead father has a negative association with the cognitive ability of women, although having a mother with ADL problems is positively correlated. For men, higher depression scores are positively correlated with parents having poor general health and for women with the mother having poor general health.

As is generally true, higher parental schooling tends to be negatively correlated with poorer respondent health. This is the case for poor general health for men with respect to mother's education, for men's IADL problems with respect to father's education, or with respect to mother's education for women. Similar results are found for having low BMI or low hemoglobin.

Of considerable interest is the fact that the district birth dummy variables are highly jointly significant for all of the health variables we look at, for both men and women. Exactly what characteristics of the birth places that are responsible for this we cannot tell. It could certainly be factors such as levels of infant mortality, and thus exposure to infections and inflammation (eg. Crimmins and Finch, 2004), but also could be other factors associated with economic conditions in the district at birth, such as rainfall (eg. Maccini and Yang, 2009).

[^5]In Table 2, the correlations between parental characteristics and the change in health measures of their grown-up children are examined. ${ }^{11}$ Unlike other health measures, the changes from 1997 to 2007 are used for hypertension and hemoglobin because IFLS started collecting these data in 1997. Having a mother with poor health status is correlated with an increase in changes of number of ADL problems for male respondents. In the female sample, if the father was dead in 2007, the increase in the number of ADL difficulties tends to be larger. For moving into poor general health, having a mother with poor general health is positively correlated with a deterioration for men, and having a father with poor general health or a mother who died, is for women. For changes in BMI and hemoglobin levels, parental health variables are not significant for either men or women. For changes in hypertension status, parental health variables are not jointly significant for men, but are, at 10% for women. For women, a mother having died of in poor general health is positively correlated with moving from no hypertension to having hypertension, though a father having poor general health has the opposite sign.

Interestingly, for many of the health outcome changes the parental health measures are not as a group significantly correlated with the changes. This is consistent with the hypothesis that the respondent-parental health correlations, which exist in the cross-sectional data from 2007, are already established by the time the respondents are 36 years old and over in 1993 (or depending on the health measure, in 1997 when respondents are 40 years and over).

4.2. Interactions with birth region

As discussed in section 3, it is more likely that respondents had experienced different living environments or access to health infrastructure at birth, depending on their birth places. For instance, respondents who were born in more developed areas probably had better health facilities and a better environment as compared to other areas in the IFLS sample.

[^6]In order to investigate whether a different level of development in the area of birth would mitigate or exacerbate the correlation between parental health and their adult children's health, a Java-Bali birth dummy variable is constructed as equal to 1 if respondents were born in either Java (including Jakarta, east, west and central Java and Yogyakarta) or Bali. These areas are and have been the more developed areas in our sample. We interact this dummy with the dummies for each parental characteristic (health and schooling).

Table 3 shows that these health associations are much lower for respondents who were born in Java or Bali. For example, having a dead father is associated with an increase of the number of ADL difficulties for women by 0.53 but this correlation almost disappears once the interaction terms with Java are taken into account. Similar results are shown for men and women's IADL problems. Father's death is correlated with women having a larger number of difficulties with IADLs but for those who were born in more developed areas, this correlation is greatly reduced. The same patterns appear for the association of a mother having poor general health with IADL or ADL problems for men; with cognition for men and depression for women. Likewise, the association of mother's death with low BMI for men is reduced by half for those born in Java or Bali, as is the association of father's ADL problems with low HDL of the respondent.

These results suggest that the level of development at birth or early childhood, which may include having better health infrastructure or facing different health and other prices, substitutes for the influence of parental health.

4.3. Respondent's height and schooling

In addition to the health status at older ages, the years of completed education and the attained height of respondents are analyzed as outcome variables. These are key human capital
outcomes that are affected by health in early life (see for example Maluccio et al, 2009) and because of that may be associated with health and schooling of parents. Height is determined mostly in early childhood and education when respondents are young adults.

Table 4 shows the results of parental SES gradients of respondents' schooling and height. It is mostly parental education which is significantly correlated with both height and years of schooling of their children. All levels of schooling of father and mother are associated with the increase in their children's education years and the higher education, the larger the coefficient. Father's education is positively correlated with heights of men, and mother's education with heights of both men and women, but with a stronger effect for women, consistent with results of Thomas (1994). There are correlations between parental schooling and respondent education. For men, having a mother who is dead is correlated with 0.4 years less schooling and having a father with poor general health with 0.5 years fewer schooling. For women, if the father is dead, height is on average 1.2 cm less. Again, the birth district dummies are highly significant.

4.4. Health and SES gradients of older adults

Regressing one's health status on own SES is a standard specification of looking at healthSES gradients. However, the correlation between one's health and SES might derive partly from the influence of parental background. To check this we add parental background variables to a specification with respondent SES variables. We use own education years and height to measure respondent's SES. Education is a standard SES measure. We would like a measure of health during childhood to complement that, and while IFLS does not have direct measures of child health, ${ }^{12}$ adult height can be used as such a variable because it reflects in large part height during childhood.

[^7]Table 5 reports both the standard model (having only respondent's own education and height, plus age and district of birth) and the extended model (adding parental health and education) for various health measures. ${ }^{13}$ Results from the standard SES model shows that own education is strongly correlated with most all of the health outcomes, those with higher schooling generally having better health outcomes. There are some exceptions, notably men and women with higher education are more likely to be overweight and have high total cholesterol. These associations may well be through diet, though we cannot tell with the IFLS data. On the other hand, more schooling is associated with a lower likelihood of having low HDL, which as seen in Table A.1, is common in Indonesia, particularly among men. Better education is also associated with better cognition, as measured by word recall, with lower depression scores, with a lower likelihood of being underweight, of lower number of problems performing ADLs and IADLs, and a lower likelihood of being in poor general health. Adult height is correlated with some of the health variables, such as number of ADLs or IADLs a women has problems with; taller women reporting fewer such problems. The birth district dummies are highly significant in all cases.

Results from the extended model show that most coefficients of parental health measures remain significant as before with the magnitudes of the coefficients being very similar to the models in Table 1, without the respondent's height and own education variables. This is quite interesting and is consistent with parental health having impacts over and above through respondent education and height. In contrast, the parental schooling coefficients drop in magnitude substantially when respondent schooling dummies are added to the specification.

Also, comparing the specifications that have only respondent's SES covariates with the ones that have both respondent's and parental SES variables, the magnitudes of the respondent's

[^8]SES coefficients drop modestly when parental SES variables are added, but remain significant as they were to begin with.

5. Conclusions

Family background is strongly correlated with various aspects of children's life even when they grow older. This paper examines the dimension of family health correlations which, despite their importance, have not been explored much due to data limitations. IFLS provides a suitable platform to examine the intergenerational health correlations, because it encompasses detailed information of both parents and their adult children.

The findings suggest that there are positive intergenerational correlations between parental health and education, and the health status of their offspring. While these correlations should not be interpreted as causal, they are consistent with the types of intergenerational correlations found for schooling and incomes. The correlations persist after controlling for respondent SES: education and height. These health associations become much lower, however, for respondents who were born in more developed areas such as Java or Bali. Being born and growing up in more developed areas apparently substitutes for influences inherited from parents. This result highlights the importance of programs and policies to focus on community level infrastructure development in less developed areas.

References

Almond, D. (2006). "Is the 1918 Influenza pandemic over? Long-term effects of in utero exposure in the post-1940 US population". Journal of Political Economy 114 (4), 672-712.
Almond, D., Chay, K., Lee, D. (2005). "The costs of low birth weight". Quarterly Journal of Economics, 1031-1083.
Almond, D., Chay, K. (2006). "The long-run intergenerational impact of poor infant health: Evidence from cohorts born during the Civil Rights era". Mimeo. Department of Economics, University of California, Berkeley.
Barker, D.J.P., Osmond, C. (1986). "Infant mortality, childhood nutrition and ischaemic heart disease in England and Wales". Lancet 1, 1077-1081.
Barker, D.J.P., Winter, P.D., Osmond, C., Margetts, B., Simmonds, S.J. (1989). "Weight in infancy and death from ischaemic heart disease". Lancet 2, 577-580.
Bowles, S., (1972). "Schooling and Inequality from generation to generation". Journal of Political Economy 80, 219-251.
Bowles, S., Gintis H., (2001). "The inheritance of economic status: Education, class and genetics". International Encyclopedia of the Social and Behavioral Sciences.
Bowles, S., Gintis H., (2002). "The inheritance of inequality". Journal of Economic Perspectives 16(3), 3-30.
Case, A., Lubotsky, D., Paxson, C., (2001). "Economics status and health in childhood: The origins of the gradient". NBER Working Paper No. 8344
Case, A., Fertig, A., Paxson, C., (2005). "The lasting impact of childhood health and circumstance". Journal of Health Economics 24, 365-389.
Crimmins, E., Finch, C., (2004). "Inflammatory exposure and historical changes in human lifespans". Science 305, 1736-1739.
Crimmins, E., Finch, C., (2006). "Infection, inflammation, height and longevity". Proceedings of the National Academy of Science 103 (2), 498-503.
Crimmins, E., Hu J., Hu P., Huang W., Kim J., Shi Y., Strauss J., Zhang L., and Zhao, Y. 2011. "CHARLS Pilot: Blood Based Biomarker Documentation", CCER, Peking University.
Dick, H., Houben, V.J.H., Linblad, J.T., Thee, K.W. (2002) The Emergence of a National Economy: An Economic History of Indonesia 1800-2000. University of Hawaii Press.
Elo, I., Preston, S. (1992). "Effects of early-life conditions on adult mortality". Population Index 58 (2), 186-211.
Emaunel, I., Filakti, H., Alberman, E., Evans, S. (1992). "Intergenerational studies of human birth weight from the 1958 birth cohort: Evidence for a multigenerational effect". British Journal of Obstetrics and Gynaecology 99 (1), 67-74.
Emanuel, I., Leisenring, W., Williams, W., Kimpo, C., Estee, S., O’Brien, W., Hale, C. (1999). " The Washington State intergenerational study of birth outcomes: Methodology and some comparisons of maternal birth weight and infant birth weight and gestation in four ethnic groups". Paediatric and Perinatal Epidemiology 13 (3), 352-371.
Eriksson, T., Bratsberg. B., Raaum, O. (2006). "Earnings persistence across generations: Transmission through health?" . Mimeo, University of Oslo.
Fogel, R.W. (2004). The Escape From Hunger and Premature Death, 1700-2100. Cambridge Univ. Press, Cambridge.
Frankenberg, E., Thomas, D. (2000). The Indonesia Family Life Survey (IFLS): Study design and results from Waves 1 and 2. DRU-2238/1-NIA/NICHD.

Frankenberg, E. and Karoly, L. (1995). The 1993 Indonesian Family File Survey: Overview and field report. RAND. DRU-1195/1-NICHD/AID.
Godfrey, K., Barker, D. (2000). "Fetal nutrition and adult disease". American Journal of Clinical Nutrition 71 (suppl), 1344S-1352S.
Luo, Z., Mu, R., Zhang, X. (2006). "Famine and overweight in China". Review of Agricultural Economics 28 (3), 296-304.
Maccini, S. and Yang, D. (2009). "Under the weather: Health, schooling and economic consequences of early-life rainfall", American Economic Review, 99(3):1006-1026.
Maluccio, J., Hoddinott, J., Behrman, J., Martorell, R., Quisumbing, A., and Stein, A. (2009). "The Impact of Improving Nutrition During Early Childhood on Education Among Guatemalan Adults", Economic Journal, 119(537):734-763.
McArdle, John. 2010. "Contemporary Challenges of Longitudinal Measurement Using HRS Data", in G. Walford, E. Tucker \& M. Viswanathan (eds.), The SAGE Handbook of Measurement. London: SAGE Press
McDade, T.W., Beck, M.A., Kuzawa, C., Adair, L.S. (2001). "Prenatal undernutrition, postnatal environments, and antibody response to vaccination in adolescence". American Journal of Clinical Nutrition 74 (4), 543-548.
Smith, J.P. (1999). "Healthy bodies and thick wallets: The dual relation between health and economic status". Journal of Economic Perspectives 13 (2), 145-167.
Smith, J.P. (2004). "Unraveling the SES: health connection". Population and Development Review, 108-132
Smith, J.P. (2009). "The impact of childhood health on adult labor market outcomes". Review of Economics and Statistics 91 (3), 478-489.
Smith, J.P., Yan, S., Strauss, J., Yaohui, Z. (2010). "Childhood health and its legacies in China: Evidence from CHARLS". Mimeo, RAND Corporation.
Strauss, J., Gertler, P., Rahman, O. and Fox, K. (1993). "Gender and Life-Cycle Differentials in the Patterns and Determinants of Adult Health", Journal of Human Resources, 28:791-837.
Strauss, J., Thomas, D. (1998). "Health, nutrition and economic development". Journal of Economic Literature 36 (2), 766-817.
Strauss, J., Beegle, K., Sikoki, B., Dwiyanto, A., Witoelar, F., Herawati, Y. (2009). The Fourth Wave of the Indonesia Family Life Survey (IFLS4): Overview and Field Report. RAND. WR-675/1-NIA/NICHD.
Strauss, J., Thomas, D. (2008). "Health over the life course". Handbook of Development Economics, vol.4.
Thomas, D. (1994). "Like Father Like Son; Like Mother Like Daughter: Parental Resources and Child Height", Journal of Human Resources, 29(4):950-988.
Thomas, D., Strauss, J., and Henriques, M. (1990). "Child survival, height for age, and household characteristics in Brazil". Journal of Development Economics 33, 197-234.
Thomas, D. Witoelar, F., Frankenberg, E., Sikoki, B., Strauss, J., Sumantri, C. and Suriastini, W. (forthcoming). "Cutting the Costs of Attrition: Results from the Indonesia Family Life Survey", Journal of Development Economics.
Witoelar F., Strauss, J. and Sikoki, B. (forthcoming). "Socioeconomic Success and Health in Later Life: Evidence from the Indonesia Family Life Survey", to appear in M. Majmundar and J.P. Smith (eds.)., Aging in Asia, National Academy of Sciences Press.

Table 1_a. Parental SES Gradients of Health of Older Adults

		Poor GHS		\#ADL problems		\#IADL problems	
		Men	Women	Men	Women	Men	Women
Death	Father Mother	$\begin{aligned} & -0.00673 \\ & (0.0297) \\ & -0.00921 \\ & (0.0195) \\ & \hline \end{aligned}$	$\begin{gathered} 0.00393 \\ (0.0306) \\ \mathbf{0 . 0 7 1 7 * * *} \\ (0.0215) \\ \hline \end{gathered}$	$\begin{gathered} -0.0397 \\ (0.0994) \\ 0.0302 \\ (0.0649) \\ \hline \end{gathered}$	$\begin{gathered} \mathbf{0 . 2 0 8 * *} \\ (0.102) \\ 0.0887 \\ (0.0808) \\ \hline \end{gathered}$	$\begin{gathered} 0.0510 \\ (0.0567) \\ -0.0365 \\ (0.0396) \\ \hline \end{gathered}$	$\begin{aligned} & \hline \mathbf{0 . 1 2 1 ^ { * } *} \\ & (0.0572) \\ & \mathbf{0 . 0 7 9 1 ^ { * }} \\ & (0.0449) \\ & \hline \end{aligned}$
GHS	Father Mother	$\begin{gathered} \hline \mathbf{0 . 0 3 3 1 *} \\ (0.0200) \\ \mathbf{0 . 0 5 1 4 ^ { * } *} \\ (0.0212) \\ \hline \end{gathered}$	$\begin{gathered} \hline \mathbf{0 . 0 5 9 0 * * *} \\ (0.0193) \\ 0.0116 \\ (0.0217) \\ \hline \end{gathered}$	$\begin{gathered} \hline \mathbf{0 . 1 6 1 ^ { * } *} \\ (0.0730) \\ 0.128 \\ (0.0805) \\ \hline \end{gathered}$	$\begin{gathered} \hline 0.0771 \\ (0.0815) \\ 0.136 \\ (0.0866) \\ \hline \end{gathered}$	$\begin{aligned} & \hline \mathbf{0 . 1 1 3 ^ { * * }} \\ & (0.0471) \\ & \mathbf{0 . 1 1 4 ^ { * * }} \\ & (0.0494) \end{aligned}$	$\begin{gathered} 0.0128 \\ (0.0481) \\ \mathbf{0 . 0 9 8 0 * *} \\ (0.0486) \end{gathered}$
ADL	Father Mother	$\begin{gathered} \hline 0.0243 \\ (0.0239) \\ -0.0123 \\ (0.0232) \\ \hline \end{gathered}$	$\begin{gathered} -0.00316 \\ (0.0217) \\ -0.0116 \\ (0.0224) \\ \hline \end{gathered}$	$\begin{gathered} 0.0231 \\ (0.0848) \\ 0.0271 \\ (0.0894) \\ \hline \end{gathered}$	$\begin{aligned} & \hline \mathbf{0 . 2 1 5 * *} \\ & (0.0866) \\ & -0.0951 \\ & (0.0919) \\ & \hline \end{aligned}$	$\begin{gathered} \hline 0.0227 \\ (0.0548) \\ -0.00521 \\ (0.0530) \\ \hline \end{gathered}$	$\begin{aligned} & \hline \mathbf{0 . 0 8 5 3 *} \\ & (0.0492) \\ & -0.0363 \\ & (0.0518) \\ & \hline \end{aligned}$
Father's Education	at least some primary completed primary completed junior high school	$\begin{gathered} \hline-0.0185 \\ (0.0319) \\ -0.00974 \\ (0.0229) \\ 0.000235 \\ (0.0370) \end{gathered}$	$\begin{gathered} -0.0314 \\ (0.0310) \\ 0.0140 \\ (0.0222) \\ -0.0283 \\ (0.0459) \end{gathered}$	$\begin{gathered} \hline-0.132 \\ (0.115) \\ -0.158^{*} \\ (0.0804) \\ -0.149 \\ (0.150) \end{gathered}$	$\begin{gathered} -0.115 \\ (0.111) \\ \mathbf{0 . 1 7 7 *} \\ (0.0922) \\ 0.223 \\ (0.159) \end{gathered}$	$\begin{gathered} -0.205 * * * \\ (0.0616) \\ -0.210^{* * *} \\ (0.0514) \\ -0.213^{* *} \\ (0.0952) \end{gathered}$	$\begin{gathered} \hline-0.102 \\ (0.0662) \\ -0.0309 \\ (0.0550) \\ -0.113 \\ (0.0878) \end{gathered}$
Mother's Education	at least some primary completed primary completed junior high school	$\begin{gathered} \hline-0.0198 \\ (0.0364) \\ -0.0483^{* *} \\ (0.0241) \\ -0.118^{* *} \\ (0.0464) \\ \hline \end{gathered}$	$\begin{gathered} 0.0187 \\ (0.0370) \\ -0.0302 \\ (0.0263) \\ -0.0418 \\ (0.0556) \end{gathered}$	$\begin{gathered} 0.0389 \\ (0.133) \\ 0.0331 \\ (0.0803) \\ 0.110 \\ (0.255) \end{gathered}$	$\begin{gathered} -0.0273 \\ (0.124) \\ -0.166 \\ (0.104) \\ -0.546 * * * \\ (0.209) \end{gathered}$	$\begin{gathered} 0.0575 \\ (0.0755) \\ 0.0637 \\ (0.0501) \\ 0.159 \\ (0.161) \end{gathered}$	$\begin{aligned} & -0.0635 \\ & (0.0671) \\ & -0.0705 \\ & (0.0613) \\ & -0.208^{*} \\ & (0.110) \end{aligned}$
Respondent's age	$\begin{aligned} & 60-65 \\ & 65-70 \\ & 70-75 \\ & 75-80 \\ & 80- \end{aligned}$	$\begin{gathered} 0.0483^{* *} \\ (0.0222) \\ \mathbf{0 . 1 2 5 * *} \\ (0.0254) \\ \mathbf{0 . 1 9 3 ^ { * * * }} \\ (0.0278) \\ \mathbf{0 . 1 9 3 ^ { * * * }} \\ (0.0346) \\ \mathbf{0 . 2 1 7 * * *} \\ (0.0384) \end{gathered}$	$\begin{gathered} 0.0135 \\ (0.0207) \\ \mathbf{0 . 0 6 4 5 * * *} \\ (0.0228) \\ \mathbf{0 . 1 0 5 * * *} \\ (0.0285) \\ \mathbf{0 . 1 1 6 * * *} \\ (0.0343) \\ \mathbf{0 . 1 6 4 * *} \\ (0.0342) \\ \hline \end{gathered}$	$\begin{gathered} \mathbf{0 . 3 4 8 * * *} \\ (0.0899) \\ 0.879^{* * *} \\ (0.102) \\ 1.393^{* * *} \\ (0.140) \\ 1.475^{* * *} \\ (0.173) \\ 2.868^{* * *} \\ (0.205) \\ \hline \end{gathered}$	$0.594^{* * *}$ (0.0832) $1.087^{* * *}$ (0.0941) $1.633^{* * *}$ (0.123) $2.486^{* * *}$ (0.180) $3.216^{* * *}$ (0.175)	$\mathbf{0 . 1 8 0 * * *}$ (0.0548) $\mathbf{0 . 5 3 3 * *}$ (0.0635) $0.906 * * *$ (0.0887) $\mathbf{1 . 1 2 7 * * *}$ (0.114) $\mathbf{1 . 6 3 2}$) (0.129)	$\begin{gathered} \mathbf{0 . 4 0 0 ^ { * * * }} \\ (0.0490) \\ 0.673^{* * *} \\ (0.0566) \\ 1.096^{* * *} \\ (0.0765) \\ 1.686^{* * *} \\ (0.103) \\ 2.035^{* * *} \\ (0.0912) \\ \hline \end{gathered}$
Constant		$\begin{gathered} \mathbf{0 . 2 8 0 * * *} \\ (0.103) \\ \hline \end{gathered}$	$\begin{gathered} \text { 0.424*** } \\ (0.0820) \\ \hline \end{gathered}$	$\begin{gathered} 0.630 \\ (0.390) \\ \hline \end{gathered}$	$\begin{aligned} & \text { 0.489* } \\ & (0.277) \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 0.309* } \\ & (0.185) \\ & \hline \end{aligned}$	$\begin{aligned} & -0.0317 \\ & (0.101) \\ & \hline \end{aligned}$
R-squared		0.128	0.092	0.291	0.301	0.290	0.344
Sample size		3081	3608	3080	3605	3081	3605
Birth Place (kabup	an) dummy variables	Yes	Yes	Yes	Yes	Yes	Yes
F-test (p-values)							
Age dummy variables		0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Parent's education dummy variables		0.0400	0.4593	0.5798	0.0699	0.0017	0.0248
Parent's death dummy variables		0.8526	0.0033	0.8430	0.0477	0.4402	0.0167
Parent's GHS dummy variables		0.0001	0.0007	0.0036	0.0430	0.0004	0.0528
Parent's ADL dummy variables		0.5964	0.7867	0.8539	0.0461	0.9140	0.2210
Parent's health (death, GHS, ADL) dummy variables		0.0005	0.0001	0.0050	0.0003	0.0004	0.0014
Parent's health (death, GHS, ADL) + Edu dummy varsBirth Place dummy variables (kabupatan level)		0.0003	0.0003	0.0302	0.0001	0.0000	0.0000
		0.0000	0.0000	0.0000	0.0000	0.0000	0.0000

Source: IFLS4 Note: Standard errors in parenthesis. (clustered at community level) ${ }^{* * *}$ significant at 1%, ** significant at 5\%, * significant at 10%. Dummy variables capturing missing observations are included in the regression for each of the following variables: father/mother's education, GHS and ADL but not reported in the table.

Table 1_b. Parental SES Gradients of Health of Older Adults

		BMI (< 18.5)		BMI (>= 25)		$\mathrm{HB}(\mathrm{M}<13, \mathrm{~W}<12)$	
		M EN	WOM EN	M EN	WOM EN	M EN	WOM EN
Death	Father Mother	$\begin{gathered} -0.00480 \\ (0.0280) \\ \mathbf{0 . 0 4 5 3 ^ { * * * }} \\ (0.0173) \\ \hline \end{gathered}$	$\begin{gathered} \mathbf{0 . 0 5 5 0 * *} \\ (0.0215) \\ \mathbf{0 . 0 2 9 5 *} \\ (0.0156) \\ \hline \end{gathered}$	$\begin{gathered} 0.0448 \\ (0.0334) \\ -0.0378^{*} \\ (0.0225) \\ \hline \end{gathered}$	$\begin{gathered} -0.0102 \\ (0.0370) \\ -0.0636^{* *} \\ (0.0262) \\ \hline \end{gathered}$	$\begin{gathered} 0.00541 \\ (0.0342) \\ \mathbf{0 . 0 6 9 3} * * * \\ (0.0221) \\ \hline \end{gathered}$	$\begin{gathered} \hline 0.0113 \\ (0.0349) \\ 0.0105 \\ (0.0212) \\ \hline \end{gathered}$
GHS	Father Mother	$\begin{aligned} & -0.00121 \\ & (0.0193) \\ & 0.00295 \\ & (0.0202) \end{aligned}$	$\begin{array}{r} \hline-0.00997 \\ (0.0170) \\ 0.00648 \\ (0.0168) \end{array}$	$\begin{aligned} & \hline-0.00256 \\ & (0.0196) \\ & -0.00824 \\ & (0.0197) \end{aligned}$	$\begin{gathered} 0.0179 \\ (0.0212) \\ -0.0249 \\ (0.0222) \\ \hline \end{gathered}$	$\begin{gathered} -0.0216 \\ (0.0206) \\ -0.00689 \\ (0.0217) \end{gathered}$	$\begin{gathered} 0.0180 \\ (0.0224) \\ -0.0356 \\ (0.0219) \end{gathered}$
ADL	Father Mother	$\begin{gathered} -0.00631 \\ (0.0227) \\ 0.00946 \\ (0.0206) \\ \hline \end{gathered}$	$\begin{gathered} \hline 0.0189 \\ (0.0186) \\ -0.0191 \\ (0.0169) \\ \hline \end{gathered}$	$\begin{aligned} & \hline-0.0315 \\ & (0.0222) \\ & 0.00991 \\ & (0.0225) \\ & \hline \end{aligned}$	$\begin{aligned} & \hline-0.0349 \\ & (0.0228) \\ & \mathbf{0 . 0 4 4 4} \\ & (0.0243) \\ & \hline \end{aligned}$	$\begin{gathered} \hline 0.0212 \\ (0.0258) \\ -0.0196 \\ (0.0241) \\ \hline \end{gathered}$	$\begin{aligned} & \hline-0.0350 \\ & (0.0249) \\ & \mathbf{0 . 0 4 6 5} \\ & (0.0238) \\ & \hline \end{aligned}$
Father's Education	at least some primary completed primary completed junior high school	$\begin{aligned} & -0.0189 \\ & (0.0267) \\ & -0.0160 \\ & (0.0211) \\ & -0.0513 \\ & (0.0330) \\ & \hline \end{aligned}$	$\begin{gathered} 0.00356 \\ (0.0321) \\ -0.0261 \\ (0.0196) \\ -0.0894^{* * *} \\ (0.0257) \\ \hline \end{gathered}$	$\begin{gathered} 0.0309 \\ (0.0306) \\ \mathbf{0 . 0 6 0 0 ^ { * }} \\ (0.0237) \\ 0.0683 \\ (0.0429) \end{gathered}$	$\begin{gathered} 0.0471 \\ (0.0371) \\ \mathbf{0 . 1 0 1 * * *} \\ (0.0265) \\ \mathbf{0 . 1 8 8 ^ { * * * }} \\ (0.0435) \\ \hline \end{gathered}$	$\begin{gathered} -0.0553^{*} \\ (0.0329) \\ -0.0352 \\ (0.0257) \\ -0.0447 \\ (0.0418) \\ \hline \end{gathered}$	$\begin{aligned} & -0.0340 \\ & (0.0362) \\ & -0.0338 \\ & (0.0263) \\ & -0.0776^{*} \\ & (0.0444) \\ & \hline \end{aligned}$
Mother's Education	at least some primary completed primary completed junior high school	$\begin{gathered} -0.0548^{*} \\ (0.0281) \\ -0.0572^{* *} \\ (0.0242) \\ -0.0769^{*} \\ (0.0394) \\ \hline \end{gathered}$	$\begin{gathered} -0.0158 \\ (0.0301) \\ -0.0375^{*} \\ (0.0197) \\ 0.0305 \\ (0.0402) \\ \hline \end{gathered}$	$\begin{gathered} -0.00747 \\ (0.0336) \\ \mathbf{0 . 0 7 2 8 ^ { * * * }} \\ (0.0262) \\ \mathbf{0 . 1 9 1} \mathbf{1}^{* * *} \\ (0.0689) \\ \hline \end{gathered}$	$\begin{gathered} 0.0561 \\ (0.0404) \\ -0.00700 \\ (0.0326) \\ -0.0564 \\ (0.0668) \end{gathered}$	$\begin{gathered} \mathbf{0 . 1 1 0 * * *} \\ (0.0391) \\ -0.00638 \\ (0.0294) \\ -0.0332 \\ (0.0575) \\ \hline \end{gathered}$	$\begin{gathered} 0.0371 \\ (0.0367) \\ -0.00224 \\ (0.0284) \\ -0.00420 \\ (0.0589) \\ \hline \end{gathered}$
Respondent's age	$\begin{aligned} & 60-65 \\ & 65-70 \\ & 70-75 \\ & 75-80 \\ & 80- \end{aligned}$	0.0341 (0.0224) $\mathbf{0 . 0 7 8 1} * * *$ (0.0232) $\mathbf{0 . 1 5 6 * * *}$ (0.0323) $\mathbf{0 . 2 0 4 * * *}$ (0.0409) $\mathbf{0 . 2 0 1 * * *}$ (0.0432)	$\begin{gathered} \hline \mathbf{0 . 0 3 1 8 *} \\ (0.0183) \\ \mathbf{0 . 1 2 9 * * *} \\ (0.0218) \\ \mathbf{0 . 1 6 4 * * *} \\ (0.0263) \\ \mathbf{0 . 1 4 5 * * *} \\ (0.0313) \\ \mathbf{0 . 2 0 6})^{* * *} \\ (0.0370) \\ \hline \end{gathered}$	-0.0273 (0.0218) $-0.0644^{* * *}$ (0.0195) $-0.102^{* * *}$ (0.0219) $-0.0702^{* *}$ (0.0282) $-0.114^{* * *}$ (0.0247) 0.321	$\begin{gathered} \hline-0.0490^{* *} \\ (0.0229) \\ -0.101^{* * *} \\ (0.0238) \\ -0.151^{* * *} \\ (0.0246) \\ -0.143^{* * *} \\ (0.0290) \\ -0.207^{* * *} \\ (0.0284) \end{gathered}$	$\begin{gathered} \hline 0.0389 \\ (0.0237) \\ \mathbf{0 . 1 1 5} * * * \\ (0.0264) \\ \mathbf{0 . 2 1 4 * * *} \\ (0.0321) \\ \mathbf{0 . 2 1 0} * * * \\ (0.0443) \\ \mathbf{0 . 2 8 8}) \\ (0.0405) \\ \hline \end{gathered}$	0.0399 (0.0251) $\mathbf{0 . 0 8 8 7 * * *}$ (0.0248) $\mathbf{0 . 1 1 9 * * *}$ (0.0303) $\mathbf{0 . 1 8 4 * * *}$ (0.0377) $\mathbf{0 . 2 6 8 * * *}$ (0.0387)
Constant		$\begin{gathered} 0.0644 \\ (0.0558) \end{gathered}$	$\begin{aligned} & -0.0178 \\ & (0.0338) \end{aligned}$	$\begin{gathered} \text { 0.321*** } \\ (0.105) \end{gathered}$	$\begin{gathered} \mathbf{0 . 6 5 2} * * * \\ (0.0753) \end{gathered}$	$\begin{aligned} & \mathbf{0 . 2 0 0 * *} \\ & (0.0789) \end{aligned}$	$\begin{gathered} \mathbf{0 . 3 6 7 * * *} \\ (0.0848) \end{gathered}$
R-squared		0.108	0.110	0.089	0.127	0.126	0.096
Sample size		2974	3482	2974	3482	2979	3474
Birth Place (kabupatan) dummy variables		Yes	Yes	Yes	Yes	Yes	Yes
F-test (p-values)							
Age dummy variables Parent's education du Parent's death dumm Parent's GHS dummy Parent's ADL dummy Parent's health (death Parent's health (death Birth Place dummy va	my variables variables variables variables GHS, ADL) dummy variables GHS, ADL) + Edu dummy vars iables (kabupatan level)	$\begin{aligned} & 0.0000 \\ & 0.0003 \\ & 0.0327 \\ & 0.9893 \\ & 0.8975 \\ & 0.1624 \\ & 0.0002 \\ & 0.0000 \end{aligned}$	$\begin{aligned} & 0.0000 \\ & 0.0001 \\ & 0.0027 \\ & 0.8303 \\ & 0.4396 \\ & 0.0263 \\ & 0.0000 \\ & 0.0000 \end{aligned}$	$\begin{aligned} & 0.0000 \\ & 0.0000 \\ & 0.1727 \\ & 0.8467 \\ & 0.3163 \\ & 0.3464 \\ & 0.0000 \\ & 0.0000 \end{aligned}$	$\begin{aligned} & 0.0000 \\ & 0.0000 \\ & 0.0439 \\ & 0.5156 \\ & 0.1506 \\ & 0.0516 \\ & 0.0000 \\ & 0.0000 \end{aligned}$	$\begin{aligned} & 0.0000 \\ & 0.0848 \\ & 0.0067 \\ & 0.3704 \\ & 0.6449 \\ & 0.0364 \\ & 0.0150 \\ & 0.0000 \end{aligned}$	$\begin{aligned} & 0.0000 \\ & 0.4048 \\ & 0.8227 \\ & 0.2673 \\ & 0.1363 \\ & 0.4673 \\ & 0.4529 \\ & 0.0000 \end{aligned}$

Source: IFLS4 Note: Standard errors in parenthesis. (clustered at community level) *** significant at $1 \%, * *$ significant at $5 \%, *$ significant at 10%. Dummy variables
Capturing missing observations are included in the regression for each of the following variables: father/mother's education, GHS and ADL but not reported in the table.

Table 1_c. Parental SES Gradients of Health of Older Adults

		Hypertension		Cholesterol (>=240)		HDL (<40)	
		MEN	WOMEN	M EN	WOMEN	M EN	WOMEN
Death	Father Mother	$\begin{gathered} 0.0277 \\ (0.0413) \\ \mathbf{0 . 0 5 5 4 * *} \\ (0.0273) \end{gathered}$	$\begin{gathered} 0.0187 \\ (0.0376) \\ \mathbf{0 . 0 5 2 6 * *} \\ (0.0248) \\ \hline \end{gathered}$	$\begin{aligned} & \hline 0.00514 \\ & (0.0254) \\ & -0.00315 \\ & (0.0180) \end{aligned}$	$\begin{gathered} 0.0221 \\ (0.0335) \\ -0.00820 \\ (0.0212) \\ \hline \end{gathered}$	$\begin{gathered} -0.00724 \\ (0.0375) \\ 0.0381 \\ (0.0254) \\ \hline \end{gathered}$	$\begin{aligned} & -0.0337 \\ & (0.0362) \\ & -0.0276 \\ & (0.0246) \end{aligned}$
GHS	Father Mother	$\begin{gathered} 0.0189 \\ (0.0249) \\ -0.0123 \\ (0.0247) \end{gathered}$	$\begin{gathered} -0.00576 \\ (0.0234) \\ 0.0110 \\ (0.0226) \end{gathered}$	$\begin{gathered} \hline 0.0160 \\ (0.0159) \\ 0.00477 \\ (0.0147) \end{gathered}$	$\begin{gathered} \hline-0.0187 \\ (0.0195) \\ 0.00549 \\ (0.0203) \end{gathered}$	$\begin{gathered} \hline 0.0111 \\ (0.0243) \\ -0.0558^{* *} \\ (0.0228) \end{gathered}$	$\begin{gathered} \hline-0.0213 \\ (0.0224) \\ 0.0236 \\ (0.0217) \end{gathered}$
ADL	Father Mother	$\begin{aligned} & -0.00627 \\ & (0.0287) \\ & -0.00119 \\ & (0.0277) \end{aligned}$	$\begin{aligned} & 0.00864 \\ & (0.0231) \\ & -0.00539 \\ & (0.0239) \\ & \hline \end{aligned}$	$\begin{aligned} & 0.00428 \\ & (0.0185) \\ & -0.00552 \\ & (0.0171) \end{aligned}$	$\begin{gathered} 0.0108 \\ (0.0214) \\ -0.00900 \\ (0.0221) \end{gathered}$	$\begin{gathered} -0.00567 \\ (0.0306) \\ 0.0189 \\ (0.0301) \end{gathered}$	$\begin{gathered} 0.0618^{* *} \\ (0.0253) \\ -0.0649^{* * *} \\ (0.0240) \end{gathered}$
Father's Education	at least some primary completed primary completed junior high school	$\begin{gathered} -0.0518 \\ (0.0381) \\ 0.0304 \\ (0.0297) \\ 0.0448 \\ (0.0486) \end{gathered}$	$\begin{aligned} & 0.00581 \\ & (0.0377) \\ & -0.0251 \\ & (0.0261) \\ & -0.0204 \\ & (0.0502) \end{aligned}$	$\begin{gathered} -0.0176 \\ (0.0225) \\ \mathbf{0 . 0 3 1 1} \\ (0.0188) \\ 0.0334 \\ (0.0330) \\ \hline \end{gathered}$	$\begin{gathered} -0.0169 \\ (0.0318) \\ \mathbf{0 . 0 7 1 2 ^ { * * * }} \\ (0.0235) \\ 0.0602 \\ (0.0406) \\ \hline \end{gathered}$	$\begin{gathered} 0.0228 \\ (0.0368) \\ -0.0330 \\ (0.0278) \\ 0.0197 \\ (0.0489) \end{gathered}$	$\begin{gathered} -0.00662 \\ (0.0396) \\ -0.0535 * * \\ (0.0261) \\ -0.0344 \\ (0.0488) \\ \hline \end{gathered}$
Mother's Education	at least some primary completed primary completed junior high school	$\begin{gathered} -0.0519 \\ (0.0424) \\ 0.0310 \\ (0.0323) \\ 0.0811 \\ (0.0670) \end{gathered}$	$\begin{gathered} 0.0366 \\ (0.0408) \\ -0.00383 \\ (0.0325) \\ 0.00417 \\ (0.0667) \\ \hline \end{gathered}$	$\begin{gathered} 0.0467^{*} \\ (0.0275) \\ 0.00871 \\ (0.0205) \\ 0.0109 \\ (0.0527) \end{gathered}$	$\begin{gathered} -\mathbf{0 . 0 7 4 2 * *} \\ (0.0293) \\ -0.0387 \\ (0.0290) \\ 0.0618 \\ (0.0625) \\ \hline \end{gathered}$	$\begin{gathered} -0.0263 \\ (0.0433) \\ 0.0247 \\ (0.0313) \\ 0.0898 \\ (0.0688) \end{gathered}$	$\begin{gathered} 0.0662 \\ (0.0434) \\ -0.00629 \\ (0.0299) \\ -0.0670 \\ (0.0703) \end{gathered}$
Respondent's age	$\begin{aligned} & 60-65 \\ & 65-70 \\ & 70-75 \\ & 75-80 \\ & 80- \end{aligned}$	$\begin{gathered} \hline \mathbf{0 . 0 7 3 6} 6^{*} \\ (0.0288) \\ \mathbf{0 . 1 1 4 * * *} \\ (0.0294) \\ \mathbf{0 . 1 6 8 ^ { * * * }} \\ (0.0331) \\ \mathbf{0 . 1 8 8 ^ { * * * }} \\ (0.0396) \\ \mathbf{0 . 2 0 0} \\ (0.0408 \end{gathered}$	$\begin{gathered} \hline \mathbf{0 . 0 7 4 1 ^ { * * }} \\ (0.0254) \\ \mathbf{0 . 1 3 1 * * *} \\ (0.0249) \\ \mathbf{0 . 2 1 4 * * *} \\ (0.0304) \\ \mathbf{0 . 1 8 9 * * *} \\ (0.0320) \\ \mathbf{0 . 2 6 2 * *} \\ (0.0312) \end{gathered}$	$\begin{gathered} \hline-0.0316^{* *} \\ (0.0158) \\ -0.0452^{* * *} \\ (0.0163) \\ -0.00662 \\ (0.0207) \\ -0.0401 \\ (0.0248) \\ -0.0637^{* * *} \\ (0.0236) \end{gathered}$	$\begin{gathered} \hline 0.0175 \\ (0.0213) \\ -0.0113 \\ (0.0208) \\ -0.0148 \\ (0.0253) \\ -0.0130 \\ (0.0302) \\ -0.0115 \\ (0.0309) \\ \hline \end{gathered}$	-0.0308 (0.0263) $-0.0538^{* *}$ (0.0268) $-0.0946^{* * *}$ (0.0318) -0.0227 (0.0423) -0.0154 (0.0425)	$\begin{gathered} \hline-0.0466^{*} \\ (0.0235) \\ 0.0279 \\ (0.0258) \\ -0.0121 \\ (0.0275) \\ -0.0510 \\ (0.0362) \\ -0.0283 \\ (0.0356) \end{gathered}$
Constant		$\begin{gathered} \hline \mathbf{0 . 5 2 0 * * *} \\ (0.107) \end{gathered}$	$\begin{gathered} \hline \mathbf{0 . 5 4 5 * * *} \\ (0.0920) \\ \hline \end{gathered}$	$\begin{gathered} 0.0835 \\ (0.0537) \end{gathered}$	$\begin{gathered} \mathbf{0 . 2 2 1}^{* *} \\ (0.105) \end{gathered}$	$\begin{aligned} & \hline 0.686^{* * *} \\ & (0.0860) \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 0.507 * * * \\ & (0.0883) \\ & \hline \end{aligned}$
R-squared		0.082	0.091	0.098	0.113	0.084	0.107
Sample size		2985	3493	2957	3457	2931	3445
Birth Place (kabupatan) dummy variables		Yes	Yes	Yes	Yes	Yes	Yes
F-test (p-values)							
Age dummy variables		0.0000	0.0000	0.0166	0.8531	0.0755	0.1147
Parent's education dummy variables		0.0028	0.8191	0.1043	0.0003	0.3484	0.0912
Parent's death dummy variables		0.0754	0.0734	0.9711	0.7573	0.3258	0.2694
Parent's GHS dummy variables		0.7473	0.8871	0.3886	0.6163	0.0379	0.4911
Parent's ADL dummy variables		0.9544	0.9324	0.9480	0.8701	0.7985	0.0136
Parent's health (death, GHS, ADL) dummy variables		0.4435	0.3594	0.8811	0.9638	0.3055	0.1140
Parent's health (death, GHS, ADL) + Edu dummy vars		0.0055	0.6558	0.3038	0.0032	0.3392	0.0416
Birth Place dummy variables (kabupatan level)		0.0000	0.0000	0.0000	0.0000	0.0000	0.0000

Source: IFLS4 Note: Standard errors in parenthesis. (clustered at community level) *** significant at 1\%, ** significant at 5%, * significant at 10%. Dummy variables capturing missing observations are included in the regression for each of the following variables: father/mother's education, GHS and ADL but not reported in the table.

Table 1_d. Parental SES Gradients of Health of Older Adults

		Cognition		Depression	
		MEN	WOM EN	M EN	WOM EN
Death	Father Mother	$\begin{gathered} -0.121 \\ (0.132) \\ -0.129 \\ (0.0840) \end{gathered}$	$\begin{gathered} -\mathbf{- 0 . 3 0 6 * *} \\ (0.138) \\ -0.0391 \\ (0.0837) \\ \hline \end{gathered}$	$\begin{gathered} -0.0453 \\ (0.277) \\ 0.145 \\ (0.179) \end{gathered}$	$\begin{gathered} \hline 0.277 \\ (0.298) \\ 0.265 \\ (0.197) \end{gathered}$
GHS	Father Mother	$\begin{aligned} & -0.0360 \\ & (0.0830) \\ & -0.0751 \\ & (0.0826) \end{aligned}$	$\begin{gathered} -0.0374 \\ (0.0819) \\ -0.0649 \\ (0.0781) \end{gathered}$	$\begin{gathered} \mathbf{0 . 3 1 1 * *} \\ (0.153) \\ \mathbf{0 . 2 8 8 *} \\ (0.150) \end{gathered}$	$\begin{gathered} 0.108 \\ (0.159) \\ \mathbf{0 . 5 6 1 * * *} \\ (0.171) \end{gathered}$
ADL	Father Mother	$\begin{gathered} \hline-0.0444 \\ (0.0959) \\ -0.0234 \\ (0.0907) \\ \hline \end{gathered}$	$\begin{aligned} & \hline-0.00114 \\ & (0.0955) \\ & \mathbf{0 . 1 6 8 ^ { * * }} \\ & (0.0818) \\ & \hline \end{aligned}$	$\begin{gathered} \hline 0.0734 \\ (0.197) \\ 0.256 \\ (0.183) \end{gathered}$	$\begin{gathered} \hline 0.294 \\ (0.200) \\ -0.264 \\ (0.183) \end{gathered}$
Father's Education	at least some primary completed primary completed junior high school	$\begin{gathered} 0.493^{* *} \\ (0.138) \\ 0.159 \\ (0.0967) \\ 0.457{ }^{* * *} \\ (0.162) \\ \hline \end{gathered}$	$\begin{gathered} \mathbf{0 . 4 0 8 * * *} \\ (0.132) \\ 0.547 * * \\ (0.0924) \\ 1.275^{* * *} \\ (0.166) \end{gathered}$	$\begin{gathered} -0.0775 \\ (0.243) \\ -0.470^{* * *} \\ (0.160) \\ 0.0654 \\ (0.313) \\ \hline \end{gathered}$	$\begin{gathered} -0.421 \\ (0.266) \\ -0.451^{* *} \\ (0.186) \\ -1.103^{* * *} \\ (0.331) \end{gathered}$
Mother's Education	at least some primary completed primary completed junior high school	$\begin{gathered} -0.123 \\ (0.146) \\ \mathbf{0 . 3 4 7 * * *} \\ (0.107) \\ 0.282 \\ (0.215) \end{gathered}$	$\begin{gathered} 0.135 \\ (0.147) \\ 0.189^{*} \\ (0.100) \\ 0.249 \\ (0.212) \end{gathered}$	$\begin{gathered} \hline-0.617^{* *} \\ (0.277) \\ -0.357 * * \\ (0.177) \\ -0.365 \\ (0.435) \\ \hline \end{gathered}$	$\begin{aligned} & 0.0462 \\ & (0.337) \\ & -0.296 \\ & (0.225) \\ & -0.228 \\ & (0.500) \end{aligned}$
Respondent's age	$\begin{array}{\|l} 60-65 \\ 65-70 \\ 70-75 \\ 75-80 \\ 80- \end{array}$	$-0.392^{* * *}$ (0.0948) $-0.539^{* * *}$ (0.0942) $-0.822^{* * *}$ (0.116) $-1.158^{* * *}$ (0.150) $-1.465 * * *$ (0.166)	$-0.292^{* * *}$ (0.0898) $-0.581^{* * *}$ (0.0904) $-0.698^{* * *}$ (0.126) $-1.015^{* * *}$ (0.166) $-1.330^{* * *}$ (0.231)	$\begin{gathered} -0.163 \\ (0.153) \\ \mathbf{0 . 3 1 7 ^ { * }} \\ (0.183) \\ \mathbf{0 . 4 2 4 ^ { * * }} \\ (0.209) \\ \mathbf{0 . 9 3 2 * * *} \\ (0.301) \\ \mathbf{1 . 5 1 0 ^ { * * * }} \\ (0.365) \end{gathered}$	$\begin{gathered} -0.256 \\ (0.163) \\ 0.143 \\ (0.190) \\ 0.213 \\ (0.227) \\ 0.515^{*} \\ (0.288) \\ 1.282^{* * *} \\ (0.341) \end{gathered}$
Constant		$\begin{gathered} 4.740^{* * *} \\ (0.223) \\ \hline \end{gathered}$	$\begin{gathered} \text { 4.141*** } \\ (0.257) \end{gathered}$	$\begin{gathered} 3.275^{* * *} \\ (0.462) \\ \hline \end{gathered}$	$\begin{gathered} 3.121^{* * *} \\ (0.664) \end{gathered}$
R-squared		0.203	0.253	0.110	0.107
Sample size		2317	2309	2830	3222
Birth Place (ka	tan) dummy variables	Yes	Yes	Yes	Yes
F-test (p-values)					
Age dummy variables Parent's education dummy variables Parent's death dummy variables Parent's GHS dummy variables Parent's ADL dummy variables Parent's health (death, GHS, ADL) dummy variables Parent's health (death, GHS, ADL) + Edu dummy vars Birth Place dummy variables (kabupatan level)		$\begin{aligned} & 0.0000 \\ & 0.0000 \\ & 0.1149 \\ & 0.4152 \\ & 0.7763 \\ & 0.1166 \\ & 0.0000 \\ & 0.0000 \\ & \hline \end{aligned}$	$\begin{aligned} & 0.0000 \\ & 0.0000 \\ & 0.0582 \\ & 0.4741 \\ & 0.0654 \\ & 0.0627 \\ & 0.0000 \\ & 0.0000 \end{aligned}$	$\begin{aligned} & 0.0000 \\ & 0.0000 \\ & 0.7180 \\ & 0.0004 \\ & 0.1619 \\ & 0.0000 \\ & 0.0000 \\ & 0.0000 \\ & \hline \end{aligned}$	$\begin{aligned} & 0.0001 \\ & 0.0000 \\ & 0.1891 \\ & 0.0003 \\ & 0.2417 \\ & 0.0002 \\ & 0.0000 \\ & 0.0000 \end{aligned}$

Source: IFLS4 Note: Standard errors in parenthesis. (clustered at community level) ${ }^{* * *}$ significant at 1%, ** significant at 5%, * significant at 10%. Dummy variables capturing missing observations are included in the regression for each of the following variables: father/mother's education, GHS and ADL but not reported in the table.

Table 2_a. Parental SES Gradients of Change in Health of Older Adults

		$\begin{gathered} \text { GHS } \\ 2007-1993 \end{gathered}$		$\begin{gathered} \text { ADL } \\ 2007-1993 \\ \hline \end{gathered}$		$\begin{gathered} \text { BMI } \\ 2007-1993 \\ \hline \end{gathered}$	
		M EN	WOM EN	MEN	WOMEN	MEN	WOMEN
Death	Father Mother	-0.00945 (0.0441) 0.000374 (0.0289)	$\begin{gathered} \hline 0.0191 \\ (0.0427) \\ \mathbf{0 . 0 5 3 2} \\ (0.0289) \\ \hline \end{gathered}$	$\begin{gathered} \hline-0.0634 \\ (0.143) \\ -0.0508 \\ (0.0917) \\ \hline \end{gathered}$	$\begin{aligned} & \hline \mathbf{0 . 2 7 8} \\ & (0.159) \\ & -0.0268 \\ & (0.118) \\ & \hline \end{aligned}$	$\begin{aligned} & 0.0845 \\ & (0.238) \\ & -0.0706 \\ & (0.175) \\ & \hline \end{aligned}$	$\begin{aligned} & 0.0187 \\ & (0.330) \\ & -0.341 \\ & (0.229) \end{aligned}$
GHS	Father Mother	0.00394 (0.0265) 0.0470^{*} (0.0270)	$\begin{aligned} & \hline \mathbf{0 . 0 4 8 5} \\ & (0.0265) \\ & 0.00552 \\ & (0.0304) \\ & \hline \end{aligned}$	$\begin{aligned} & -0.00947 \\ & (0.0968) \\ & \mathbf{0 . 2 1 2 * *} \\ & (0.0986) \\ & \hline \end{aligned}$	$\begin{gathered} 0.0996 \\ (0.104) \\ 0.177 \\ (0.116) \end{gathered}$	$\begin{aligned} & \hline 0.0819 \\ & (0.149) \\ & -0.213 \\ & (0.157) \end{aligned}$	$\begin{aligned} & 0.00611 \\ & (0.191) \\ & -0.0874 \\ & (0.178) \\ & \hline \end{aligned}$
A D L	Father Mother	0.0436 (0.0337) -0.00628 (0.0321) -0.025	$\begin{gathered} \hline 0.0311 \\ (0.0297) \\ -0.0245 \\ (0.0287) \\ \hline \end{gathered}$	$\begin{gathered} 0.108 \\ (0.111) \\ -0.145 \\ (0.116) \\ \hline \end{gathered}$	$\begin{gathered} \hline 0.158 \\ (0.116) \\ -0.0601 \\ (0.117) \\ \hline \end{gathered}$	$\begin{gathered} \hline 0.107 \\ (0.170) \\ 0.0269 \\ (0.186) \\ \hline \end{gathered}$	$\begin{aligned} & -0.0957 \\ & (0.202) \\ & -0.0372 \\ & (0.229) \\ & \hline \end{aligned}$
Father's Education	at least some primary completed primary completed junior high school	-0.0245 (0.0432) -0.0466 (0.0314) -0.0155 (0.0491)	-0.0232 (0.0459) $\mathbf{0 . 0 6 8 0 * *}$ (0.0336) -0.00840 (0.0565)	$\begin{gathered} -0.172 \\ (0.161) \\ -\mathbf{0 . 1 6 5} \\ (0.0989) \\ -0.128 \\ (0.180) \\ \hline \end{gathered}$	$\begin{aligned} & \hline-0.154 \\ & (0.162) \\ & \mathbf{0 . 2 6 0 *} \\ & (0.125) \\ & \mathbf{0 . 3 4 5 *} \\ & (0.188) \\ & \hline \end{aligned}$	0.136 (0.261) $\mathbf{0 . 6 3 2} \mathbf{2}^{* * *}$ (0.207) 0.0150 (0.297)	0.661^{*} (0.338) 0.230 (0.212) $\mathbf{1 . 3 4 0 *}$ (0.739)
Mother's Education	at least some primary completed primary completed junior high school	$\begin{aligned} & 0.00966 \\ & (0.0490) \\ & -0.00735 \\ & (0.0323) \\ & -0.113^{*} \\ & (0.0666) \\ & \hline \end{aligned}$	$\begin{aligned} & -0.00138 \\ & (0.0437) \\ & -0.0507 \\ & (0.0381) \\ & -0.0299 \\ & (0.0794) \\ & \hline \end{aligned}$	$\begin{gathered} \hline 0.0296 \\ (0.168) \\ 0.145 \\ (0.105) \\ 0.142 \\ (0.350) \end{gathered}$	$\begin{aligned} & \hline 0.0584 \\ & (0.179) \\ & -0.141 \\ & (0.126) \\ & -0.423^{*} \\ & (0.226) \\ & \hline \end{aligned}$	$\begin{gathered} -0.0166 \\ (0.241) \\ -0.121 \\ (0.227) \\ 0.138 \\ (0.439) \end{gathered}$	$\begin{gathered} \hline-0.135 \\ (0.310) \\ 0.262 \\ (0.298) \\ -1.351^{*} \\ (0.796) \\ \hline \end{gathered}$
Respondent's age	$\begin{aligned} & 45-50 \\ & 50-55 \\ & 55-60 \\ & 60-65 \\ & 65- \end{aligned}$	-0.00340 (0.0272) $\mathbf{0 . 0 9 3 3 * * *}$ (0.0317) $\mathbf{0 . 1 2 3 * * *}$ (0.0376) $\mathbf{0 . 1 4 6 * * *}$ (0.0453) $\mathbf{0 . 1 0 8 * *}$ (0.0532)	0.0151 (0.0285) 0.00666 (0.0317) 0.0437 (0.0362) -0.0204 (0.0394) 0.0567 (0.0518)	$\begin{gathered} \mathbf{0 . 2 5 4 * * *} \\ (0.0962) \\ \mathbf{0 . 7 1 2 * *} \\ (0.128) \\ 1.115^{* * *} \\ (0.162) \\ 1.395^{* * *} \\ (0.195) \\ 2.159 * * * \\ (0.213) \end{gathered}$	$\begin{gathered} \mathbf{0 . 3 7 9 * * *} \\ (0.122) \\ \mathbf{0 . 7 2 6 ^ { * * * }} \\ (0.118) \\ 1.012^{* * *} \\ (0.171) \\ 1.825^{* * *} \\ (0.200) \\ 1.936^{* * *} \\ (0.241) \end{gathered}$	$-0.648^{* * *}$ (0.177) $-0.847^{* * *}$ (0.189) $-1.437 * * *$ (0.240) $-0.906^{* * *}$ (0.222) $-1.152^{* * *}$ (0.239)	$\begin{gathered} -0.436^{* *} \\ (0.219) \\ -0.903^{* * *} \\ (0.204) \\ -0.734^{* * *} \\ (0.260) \\ -1.553^{* * *} \\ (0.227) \\ -1.749^{* * *} \\ (0.289) \\ \hline \end{gathered}$
Constant		$\begin{aligned} & \text { 0.293** } \\ & (0.123) \end{aligned}$	$\begin{gathered} \mathbf{0 . 3 7 2 * * *} \\ (0.100) \\ \hline \end{gathered}$	$\begin{aligned} & 1.082^{*} \\ & (0.550) \\ & \hline \end{aligned}$	$\begin{gathered} 0.128 \\ (0.295) \\ \hline \end{gathered}$	$\begin{aligned} & 1.188^{* *} \\ & (0.533) \\ & \hline \end{aligned}$	$\begin{gathered} 2.020^{* * *} \\ (0.739) \\ \hline \end{gathered}$
R-squared		0.085	0.066	0.207	0.154	0.104	0.110
Sample size		2388	2828	2380	2820	2188	2698
Birth Place (kabupatan) dummy variables		Yes	Yes	Yes	Yes	Yes	Yes
F-test (p-values)							
Age dummy variables		0.0001	0.6512	0.0000	0.0000	0.0000	0.0000
Parent's education dummy variables		0.2199	0.3018	0.7286	0.1184	0.0398	0.0737
Parent's death dummy variables		0.9757	0.1292	0.7805	0.2119	0.8704	0.3291
Parent's GHS dummy variables		0.0841	0.0837	0.0634	0.0603	0.4008	0.8773
Parent's ADL dummy variables		0.3205	0.5229	0.4262	0.3985	0.7323	0.8069
Parent's health (death, GHS, ADL) dummy variables		0.0811	0.0601	0.4129	0.0235	0.6692	0.5914
Parent's health + education dummy variables		0.0858	0.1081	0.6494	0.0173	0.0820	0.1248
Birth Place dummy variables (kabupatan level)		0.0000	0.0000	0.0000	0.0000	0.0000	0.0000

Source: IFLS1, IFLS2, IFLS4
Note: Standard errors in parenthesis (clustered at community level). *** significant at 1%, ** significant at 5%, * significant at 10%. Dummy variables capturing missing observations are included in the regression for each of the following variables: father/mother's education, GHS and ADL but not reported in the table.

Table 2_b. Parental SES Gradients of Change in Health of Older Adults

		Hemoglobin 2007-1997		Hypertension 2007-1997	
		MEN	WOM EN	M EN	WOM EN
Death	Father Mother	$\begin{gathered} \hline 0.267 \\ (0.215) \\ -0.136 \\ (0.123) \end{gathered}$	$\begin{gathered} \hline-0.220 \\ (0.167) \\ 0.0769 \\ (0.103) \end{gathered}$	$\begin{aligned} & -0.0761 \\ & (0.0524) \\ & \mathbf{0 . 0 5 4 3 *} \\ & (0.0328) \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 0.00659 \\ & (0.0466) \\ & \mathbf{0 . 0 5 4 2 *} \\ & (0.0299) \\ & \hline \end{aligned}$
GHS	Father Mother	$\begin{gathered} 0.131 \\ (0.106) \\ 0.123 \\ (0.107) \end{gathered}$	$\begin{gathered} 0.0526 \\ (0.0923) \\ -0.0164 \\ (0.0912) \end{gathered}$	$\begin{gathered} 0.0137 \\ (0.0318) \\ -0.0223 \\ (0.0286) \end{gathered}$	$\begin{gathered} -0.0500^{*} \\ (0.0281) \\ 0.0467^{*} \\ (0.0271) \end{gathered}$
A D L	Father Mother	$\begin{gathered} \hline-0.223^{*} \\ (0.129) \\ 0.105 \\ (0.124) \end{gathered}$	$\begin{gathered} \hline 0.122 \\ (0.117) \\ -0.0566 \\ (0.111) \end{gathered}$	$\begin{aligned} & \hline-0.00141 \\ & (0.0358) \\ & -0.0151 \\ & (0.0362) \end{aligned}$	$\begin{gathered} \hline 0.0443 \\ (0.0298) \\ -0.0258 \\ (0.0306) \end{gathered}$
Father's Education	at least some primary completed primary completed junior high school	0.136 (0.143) 0.00311 (0.131) -0.256 (0.225)	$\begin{gathered} \hline-0.338^{* *} \\ (0.150) \\ -0.0408 \\ (0.109) \\ 0.0217 \\ (0.173) \\ \hline \end{gathered}$	$\begin{gathered} \hline-0.0537 \\ (0.0460) \\ -0.00314 \\ (0.0358) \\ 0.0768 \\ (0.0612) \end{gathered}$	$\begin{gathered} \hline-0.000736 \\ (0.0430) \\ -\mathbf{0 . 0 6 7 4 * *} \\ (0.0298) \\ -0.00759 \\ (0.0572) \\ \hline \end{gathered}$
Mother's Education	at least some primary completed primary completed junior high school	$\begin{gathered} \hline 0.0816 \\ (0.177) \\ -0.00129 \\ (0.151) \\ \mathbf{0 . 5 8 2 *} \\ (0.331) \\ \hline \end{gathered}$	$\begin{gathered} \hline 0.235 \\ (0.175) \\ -0.151 \\ (0.129) \\ -0.0826 \\ (0.339) \\ \hline \end{gathered}$	$\begin{aligned} & \hline 0.00263 \\ & (0.0466) \\ & -0.0223 \\ & (0.0404) \\ & -0.00561 \\ & (0.0946) \\ & \hline \end{aligned}$	$\begin{gathered} \hline-0.0305 \\ (0.0482) \\ 0.00897 \\ (0.0365) \\ 0.0810 \\ (0.0827) \\ \hline \end{gathered}$
Respondent's age	45-50 50-55 55-60 60-65 65 -	$\begin{gathered} -0.175 \\ (0.125) \\ -0.0437 \\ (0.136) \\ -0.225^{*} \\ (0.135) \\ -0.248 \\ (0.160) \\ -0.182 \\ (0.177) \end{gathered}$	0.0480 (0.109) $-0.364^{* * *}$ (0.121) $-0.520^{* * *}$ (0.125) $-0.343^{* *}$ (0.134) $-0.616^{* * *}$ (0.130)	$\begin{gathered} \hline 0.0694^{* *} \\ (0.0314) \\ \mathbf{0 . 0 7 6 0 * *} \\ (0.0377) \\ \mathbf{0 . 0 6 8 9 *} \\ (0.0417) \\ 0.0498 \\ (0.0414) \\ \mathbf{0 . 0 8 6 4 * *} \\ (0.0401) \\ \hline \end{gathered}$	-0.0271 (0.0297) $-0.0850^{* * *}$ (0.0315) -0.0618^{*} (0.0322) -0.0526 (0.0388) $-\mathbf{0 . 1 0 2 * * *}$ (0.0372)
Constant		$\begin{gathered} -0.00188 \\ (0.355) \\ \hline \end{gathered}$	$\begin{gathered} 1.609 * * * \\ (0.343) \end{gathered}$	$\begin{aligned} & \mathbf{0 . 3 5 4 * *} \\ & (0.139) \end{aligned}$	$\begin{gathered} \mathbf{0 . 2 1 2 * * *} \\ (0.0753) \end{gathered}$
R-squared		0.081	0.105	0.072	0.050
Sample size		2305	2842	2340	2894
Birth Place (kabupatan) dummy variables		Yes	Yes	Yes	Yes
F-test (p-values)					
Age dummy variables Parent's education dummy variables Parent's death dummy variables Parent's GHS dummy variables Parent's ADL dummy variables Parent's health (death, GHS, ADL) dummy variables Parent's health + education dummy variables Birth Place dummy variables (kabupatan level)		$\begin{aligned} & \hline 0.4139 \\ & 0.4866 \\ & 0.3131 \\ & 0.0809 \\ & 0.2202 \\ & 0.1610 \\ & 0.3707 \\ & 0.0000 \end{aligned}$	$\begin{aligned} & \hline 0.0000 \\ & 0.2132 \\ & 0.3990 \\ & 0.8484 \\ & 0.5763 \\ & 0.7674 \\ & 0.5716 \\ & 0.0000 \\ & \hline \end{aligned}$	0.1606 0.5797 0.1413 0.7381 0.8658 0.6047 0.6545 0.0000	$\begin{aligned} & \hline 0.0327 \\ & 0.1501 \\ & 0.1915 \\ & 0.1208 \\ & 0.3330 \\ & 0.0911 \\ & 0.0604 \\ & 0.0000 \\ & \hline \end{aligned}$

Source: IFLS1, IFLS2, IFLS4
Note: Standard errors in parenthesis (clustered at community level). $* * *$ significant at $1 \%, * *$ significant at $5 \%, *$ significant at 10%. Dummy variables capturing missing observations are included in the regression for each of the following variables: father/mother's education, GHS and ADL but not reported in the table.

Table 3_a. Parental SES Gradients of Health of Older Adults: Interactions with Birth Region

		Poor GHS		\#ADL problems		\#IADL problems	
		MEN	WOMEN	MEN	WOMEN	MEN	WOM EN
Death	Father	-0.00959	0.0597	-0.235	0.526***	0.0174	0.222**
		(0.0606)	(0.0604)	(0.236)	(0.194)	(0.132)	(0.105)
	Father * java	0.00761	-0.0768	0.304	-0.421*	0.0495	-0.136
		(0.0687)	(0.0693)	(0.254)	(0.229)	(0.147)	(0.125)
	Mother	0.0186	0.0529	0.139	-0.00322	-0.0510	0.0489
		(0.0373)	(0.0400)	(0.122)	(0.166)	(0.0739)	(0.0871)
	Mother * java	-0.0367	0.0263	-0.138	0.124	0.0335	0.0419
		(0.0428)	(0.0471)	(0.143)	(0.187)	(0.0898)	(0.100)
GHS	Father	0.0523	0.0402	0.284**	0.110	0.0899	-0.0374
		(0.0380)	(0.0400)	(0.128)	(0.166)	(0.0858)	(0.0962)
	Father * java	-0.0266	0.0283	-0.178	-0.0522	0.0317	0.0641
		(0.0439)	(0.0451)	(0.160)	(0.190)	(0.102)	(0.109)
	Mother	0.0600	0.0402	0.450***	0.301**	0.312***	0.210**
		(0.0370)	(0.0385)	(0.144)	(0.139)	(0.0887)	(0.0812)
	Mother * java	-0.00766	-0.0422	-0.447**	-0.248	-0.283***	-0.161
		(0.0440)	(0.0467)	(0.175)	(0.174)	(0.105)	(0.0993)
ADL	Father	0.0868**	0.0747**	0.0270	0.0869	0.0653	0.110
		(0.0375)	(0.0376)	(0.143)	(0.151)	(0.0865)	(0.0937)
	Father * java	-0.0968**	-0.118***	0.00107	0.198	-0.0673	-0.0358
		(0.0480)	(0.0455)	(0.181)	(0.186)	(0.111)	(0.115)
	Mother	-0.0209	-0.0172	-0.0146	-0.172	-0.112	-0.00906
		(0.0361)	(0.0387)	(0.151)	(0.162)	(0.0794)	(0.0920)
	Mother * java	0.0151	0.00856	0.0610	0.115	0.168	-0.0400
		(0.0465)	(0.0471)	(0.185)	(0.196)	(0.104)	(0.112)
Father's Education	at least some primary	0.0451	-0.0295	-0.00503	-0.0153	-0.160	-0.0568
		(0.0562)	(0.0569)	(0.213)	(0.242)	(0.112)	(0.145)
	completed primary	0.0687	0.0402	-0.0717	0.347**	-0.124	0.156
		(0.0461)	(0.0380)	(0.170)	(0.172)	(0.104)	(0.102)
	completed junior high school	0.0410	-0.0193	-0.104	0.644*	-0.173	0.121
		(0.0586)	(0.0929)	(0.216)	(0.337)	(0.144)	(0.175)
	at least some primary * java	-0.0941	-0.00156	-0.199	-0.140	-0.0664	-0.0579
		(0.0661)	(0.0658)	(0.244)	(0.271)	(0.128)	(0.163)
	completed primary * java	-0.111**	-0.0436	-0.101	-0.250	-0.113	-0.281**
		(0.0508)	(0.0432)	(0.185)	(0.196)	(0.116)	(0.115)
	completed Jr. H school * java	-0.0642	-0.00900	-0.0578	-0.602	-0.0748	-0.330*
		(0.0753)	(0.104)	(0.285)	(0.378)	(0.182)	(0.199)
Mother's Education	at least some primary	-0.140**	0.0333	-0.364*	0.239	-0.156	-0.0440
		(0.0664)	(0.0696)	(0.220)	(0.243)	(0.127)	(0.118)
	completed primary	-0.104**	-0.0631	-0.308*	-0.225	-0.0744	-0.167
		(0.0481)	(0.0436)	(0.170)	(0.183)	(0.106)	(0.112)
	completed junior high school	-0.222***	-0.0405	-0.278	-0.941**	-0.230*	-0.459**
		(0.0794)	(0.103)	(0.242)	(0.369)	(0.130)	(0.199)
	at least some primary * java	0.179**	-0.0221	0.584**	-0.374	0.304*	-0.0312
		(0.0774)	(0.0802)	(0.269)	(0.283)	(0.155)	(0.143)
	completed primary * java	0.0791	0.0543	0.465**	0.102	0.190	0.158
		(0.0542)	(0.0542)	(0.191)	(0.221)	(0.121)	(0.133)
	completed Jr. H school * java	0.153	-0.00927	0.586	0.581	0.593**	0.366
		(0.0966)	(0.126)	(0.429)	(0.450)	(0.254)	(0.239)

Respondent's age	$\begin{aligned} & 60-65 \\ & 65-70 \\ & 70-75 \\ & 75-80 \\ & 80- \end{aligned}$	$\begin{gathered} \hline \mathbf{0 . 0 5 0 1} \mathbf{1}^{*} \\ (0.0223) \\ \mathbf{0 . 1 2 3} * * * \\ (0.0253) \\ \mathbf{0 . 1 9 0 * * *} \\ (0.0279) \\ \mathbf{0 . 1 8 9} * * * \\ (0.0343) \\ \mathbf{0 . 2 1 9 * * *} \\ (0.0386) \end{gathered}$	$\begin{gathered} \hline 0.0121 \\ (0.0208) \\ \mathbf{0 . 0 6 1 7 ^ { * * * }} \\ (0.0228) \\ \mathbf{0 . 1 0 4 * * *} \\ (0.0286) \\ \mathbf{0 . 1 1 4 ^ { * * * }} \\ (0.0345) \\ \mathbf{0 . 1 6 3} * * * \\ (0.0342) \\ \hline \end{gathered}$	$\begin{gathered} \mathbf{0 . 3 4 7 * * *} \\ (0.0896) \\ \mathbf{0 . 8 7 5} * * \\ (0.102) \\ 1.380^{* * *} \\ (0.139) \\ 1.476^{* * *} \\ (0.173) \\ 2.866^{* * *} \\ (0.205) \end{gathered}$	$\begin{gathered} \hline \mathbf{0 . 6 0 5} 5^{* *} \\ (0.0827) \\ \mathbf{1 . 0 9 1 ^ { * * * }} \\ (0.0942) \\ \mathbf{1 . 6 4 2 * * *} \\ (0.123) \\ 2.495^{* * *} \\ (0.180) \\ 3.213^{* * *} \\ (0.174) \end{gathered}$	$\begin{gathered} \hline \mathbf{0 . 1 7 9 * * *} \\ (0.0550) \\ \mathbf{0 . 5 3 2} \mathbf{2}^{* *} \\ (0.0635) \\ \mathbf{0 . 9 0 1} \mathbf{1}^{* *} \\ (0.0887) \\ \mathbf{1 . 1 2 5 * *} \\ (0.114) \\ \mathbf{1 . 6 3 1})^{* * *} \\ (0.131) \end{gathered}$	$\begin{gathered} \hline \mathbf{0 . 4 0 2}+* * \\ (0.0485) \\ \mathbf{0 . 6 6 9} * * * \\ (0.0566) \\ 1.099^{* * *} \\ (0.0769) \\ 1.684^{* * *} \\ (0.104) \\ 2.033^{* * *} \\ (0.0913) \end{gathered}$
Constant		$\begin{gathered} \hline \mathbf{0 . 2 9 4 * * *} \\ (0.103) \end{gathered}$	$\begin{aligned} & \hline \mathbf{0 . 4 5 0 * * *} \\ & (0.0826) \\ & \hline \end{aligned}$	$\begin{gathered} \hline 0.600 \\ (0.395) \end{gathered}$	$\begin{gathered} \mathbf{0 . 6 1 7 * *} \\ (0.286) \end{gathered}$	$\begin{gathered} \hline 0.290 \\ (0.189) \end{gathered}$	$\begin{aligned} & 0.0399 \\ & (0.110) \end{aligned}$
R-squared		0.133	0.095	0.298	0.304	0.294	0.346
Sample size		3081	3608	3080	3605	3081	3605
Birth Place (kabupatan) dummy variables		Yes	Yes	Yes	Yes	Yes	Yes
F-test (p-values)							
Age dummy variables		0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Parents' Edu dummy variables * java		0.0953	0.9394	0.0616	0.3308	0.1248	0.2551
Parents' Edu dum + parents' Edu dum * java		0.0269	0.8766	0.0667	0.1283	0.0003	0.0258
Parents' death dummy variables * java		0.6893	0.5179	0.3265	0.1704	0.8893	0.5452
Parents' death dum + Parents' death dum * java		0.9124	0.0157	0.5891	0.0359	0.7556	0.0361
Parents' GHS dummy variables * java		0.7080	0.6548	0.0050	0.1913	0.0254	0.2599
Parents' GHS dum + Parents' GHS dum * java		0.0004	0.0017	0.0002	0.0453	0.0002	0.0560
Parents' ADL dummy variables * java		0.0894	0.0149	0.9331	0.2983	0.2682	0.8360
Parents' ADL dum + Parents' ADL dum * java		0.1919	0.0685	0.9662	0.0675	0.5211	0.4963
Parents' death, GHS, ADL dum * java		0.2135	0.0840	0.0100	0.1638	0.2091	0.5871
Parents' health + Parents' death, GHS, ADL * java		0.0007	0.0000	0.0002	0.0004	0.0007	0.0076
Parents' death, GHS, ADL + education dum * java		0.0557	0.4028	0.0044	0.2348	0.1037	0.4298
Birth place (kabupatan) dummy variables		0.0000	0.0000	0.0000	0.0000	0.0000	0.0000

Source: IFLS4

Note: Standard errors in parenthesis (clustered at community level).
$* * *$ significant at $1 \%, * *$ significant at $5 \%, *$ significant at 10%. Dummy variables capturing missing observations are included in the regression for each of the following variables: father/mother's education, father/mother's GHS and father/mother's ADL but not reported in the table.

Table 3_b. Parental SES Gradients of Health of Older Adults: Interactions with Birth Region

		BMI (< 18.5)		BMI ($>=25$)		HB ($\mathrm{M}<13, \mathrm{~W}<12$)	
		MEN	WOMEN	M EN	WOMEN	MEN	WOMEN
Death	Father	$\begin{gathered} -0.0385 \\ (0.0563) \end{gathered}$	$\begin{gathered} 0.0374 \\ (0.0438) \end{gathered}$	$\begin{gathered} 0.0648 \\ (0.0498) \end{gathered}$	$\begin{aligned} & 0.00955 \\ & (0.0732) \end{aligned}$	$\begin{gathered} 0.0606 \\ (0.0540) \end{gathered}$	$\begin{gathered} -0.0636 \\ (0.0689) \end{gathered}$
	Father * java	$\begin{gathered} 0.0479 \\ (0.0650) \end{gathered}$	$\begin{gathered} 0.0205 \\ (0.0499) \end{gathered}$	$\begin{aligned} & -0.0270 \\ & (0.0653) \end{aligned}$	$\begin{aligned} & -0.0281 \\ & (0.0846) \end{aligned}$	$\begin{gathered} -0.0827 \\ (0.0684) \end{gathered}$	$\begin{gathered} 0.0995 \\ (0.0787) \end{gathered}$
	Mother	$\begin{aligned} & 0.0718^{* *} \\ & (0.0317) \end{aligned}$	$\begin{gathered} 0.0402 \\ (0.0302) \end{gathered}$	$\begin{aligned} & -0.0277 \\ & (0.0387) \end{aligned}$	$\begin{gathered} -0.114^{* * *} \\ (0.0428) \end{gathered}$	$\begin{aligned} & 0.0692 * * \\ & (0.0339) \end{aligned}$	$\begin{gathered} 0.0637 \\ (0.0390) \end{gathered}$
	Mother * java	$\begin{aligned} & -0.0383 \\ & (0.0383) \end{aligned}$	$\begin{aligned} & -0.0112 \\ & (0.0355) \end{aligned}$	$\begin{aligned} & -0.0161 \\ & (0.0466) \end{aligned}$	$\begin{gathered} 0.0699 \\ (0.0518) \end{gathered}$	$\begin{aligned} & 0.00111 \\ & (0.0418) \end{aligned}$	$\begin{gathered} -0.0727 \\ (0.0451) \end{gathered}$
GHS	Father	$\begin{aligned} & -0.00378 \\ & (0.0344) \end{aligned}$	$\begin{aligned} & -0.0486^{*} \\ & (0.0280) \end{aligned}$	$\begin{gathered} -0.000989 \\ (0.0353) \end{gathered}$	$\begin{gathered} 0.0260 \\ (0.0359) \end{gathered}$	$\begin{aligned} & 0.00864 \\ & (0.0340) \end{aligned}$	$\begin{aligned} & 0.00111 \\ & (0.0372) \end{aligned}$
	Father * java	$\begin{aligned} & 0.00306 \\ & (0.0412) \end{aligned}$	$\begin{gathered} 0.0538 \\ (0.0333) \end{gathered}$	$\begin{aligned} & -0.00189 \\ & (0.0411) \end{aligned}$	$\begin{aligned} & -0.00807 \\ & (0.0425) \end{aligned}$	$\begin{gathered} -0.0415 \\ (0.0420) \end{gathered}$	$\begin{gathered} 0.0200 \\ (0.0451) \end{gathered}$
	Mother	$\begin{gathered} 0.0157 \\ (0.0379) \end{gathered}$	$\begin{gathered} 0.0621^{* *} \\ (0.0266) \end{gathered}$	$\begin{aligned} & -0.00845 \\ & (0.0380) \end{aligned}$	$\begin{aligned} & -0.00884 \\ & (0.0350) \end{aligned}$	$\begin{aligned} & -0.0415 \\ & (0.0377) \end{aligned}$	$\begin{aligned} & -0.0400 \\ & (0.0366) \end{aligned}$
	Mother * java	$\begin{aligned} & -0.0146 \\ & (0.0442) \end{aligned}$	$\begin{gathered} -0.0811^{* *} \\ (0.0324) \end{gathered}$	$\begin{aligned} & -0.00232 \\ & (0.0434) \\ & \hline \end{aligned}$	$\begin{gathered} -0.0249 \\ (0.0441) \end{gathered}$	$\begin{gathered} 0.0500 \\ (0.0450) \end{gathered}$	$\begin{gathered} 0.0109 \\ (0.0447) \end{gathered}$
ADL	Father	$\begin{gathered} \hline 0.0129 \\ (0.0411) \end{gathered}$	$\begin{gathered} \hline 0.0375 \\ (0.0296) \end{gathered}$	$\begin{gathered} \hline-0.0803^{* *} \\ (0.0337) \end{gathered}$	$\begin{gathered} -0.0912^{* *} \\ (0.0390) \end{gathered}$	$\begin{aligned} & \mathbf{0 . 0 0 6 5 2} \\ & (0.0429) \end{aligned}$	$\begin{gathered} -0.0841^{* *} \\ (0.0350) \end{gathered}$
	Father * java	$\begin{aligned} & -0.0315 \\ & (0.0495) \end{aligned}$	$\begin{aligned} & -0.0277 \\ & (0.0377) \end{aligned}$	$\begin{aligned} & \mathbf{0 . 0 7 6 3 ^ { * }} \\ & (0.0430) \end{aligned}$	$\begin{aligned} & \mathbf{0 . 0 8 5 0 ^ { * }} \\ & (0.0472) \end{aligned}$	$\begin{gathered} 0.0214 \\ (0.0522) \end{gathered}$	$\begin{gathered} 0.0726 \\ (0.0464) \end{gathered}$
	Mother	$\begin{aligned} & -0.0295 \\ & (0.0331) \end{aligned}$	$\begin{aligned} & -0.0540^{*} \\ & (0.0293) \end{aligned}$	$\begin{gathered} 0.0336 \\ (0.0339) \end{gathered}$	$\begin{aligned} & \mathbf{0 . 0 7 2 4 *} \\ & (0.0389) \end{aligned}$	$\begin{gathered} 0.0219 \\ (0.0409) \end{gathered}$	$\begin{gathered} 0.0830 * * \\ (0.0394) \end{gathered}$
	Mother * java	$\begin{gathered} 0.0613 \\ (0.0423) \end{gathered}$	$\begin{gathered} 0.0550 \\ (0.0358) \end{gathered}$	$\begin{aligned} & -0.0388 \\ & (0.0450) \end{aligned}$	$\begin{aligned} & -0.0422 \\ & (0.0506) \end{aligned}$	$\begin{aligned} & -0.0613 \\ & (0.0500) \end{aligned}$	$\begin{aligned} & -0.0542 \\ & (0.0489) \end{aligned}$
Father's Education	at least some primary	$\begin{gathered} 0.0567 \\ (0.0483) \end{gathered}$	$\begin{aligned} & \text { 0.0887* } \\ & (0.0505) \end{aligned}$	$\begin{gathered} 0.0197 \\ (0.0501) \end{gathered}$	$\begin{aligned} & -0.0237 \\ & (0.0634) \end{aligned}$	$\begin{aligned} & -0.00366 \\ & (0.0521) \end{aligned}$	$\begin{aligned} & -0.0544 \\ & (0.0650) \end{aligned}$
	completed primary	0.0358	-0.0205	0.0502	0.101**	0.00130	-0.00821
		(0.0416)	(0.0334)	(0.0386)	(0.0445)	(0.0452)	(0.0461)
	completed junior high school	$\begin{aligned} & -0.0140 \\ & (0.0528) \end{aligned}$	$\begin{gathered} -0.104 * * * \\ (0.0350) \end{gathered}$	$\begin{gathered} 0.0190 \\ (0.0594) \end{gathered}$	$\begin{gathered} 0.278^{* * *} \\ (0.0759) \end{gathered}$	$\begin{aligned} & 0.00293 \\ & (0.0627) \end{aligned}$	$\begin{gathered} -0.105 \\ (0.0773) \end{gathered}$
	at least some primary * java	$\begin{aligned} & -0.111^{* *} \\ & (0.0563) \end{aligned}$	$\begin{aligned} & -0.125 * * \\ & (0.0621) \end{aligned}$	$\begin{gathered} 0.0165 \\ (0.0601) \end{gathered}$	$\begin{gathered} 0.104 \\ (0.0752) \end{gathered}$	$\begin{aligned} & -0.0783 \\ & (0.0655) \end{aligned}$	$\begin{gathered} 0.0332 \\ (0.0757) \end{gathered}$
	completed primary * java	-0.0720	-0.00582	0.0138	0.00233	-0.0543	-0.0341
		(0.0466)	(0.0392)	(0.0466)	(0.0522)	(0.0535)	(0.0534)
	completed Jr. H school * java	$\begin{aligned} & -0.0504 \\ & (0.0672) \end{aligned}$	$\begin{gathered} 0.0194 \\ (0.0460) \end{gathered}$	$\begin{gathered} 0.0768 \\ (0.0814) \end{gathered}$	$\begin{gathered} -0.127 \\ (0.0915) \\ \hline \end{gathered}$	$\begin{aligned} & -0.0689 \\ & (0.0830) \end{aligned}$	$\begin{gathered} 0.0363 \\ (0.0944) \end{gathered}$
Mother's Education	at least some primary	-0.0915*	-0.0624	-0.0295	0.105	0.118*	0.00460
		(0.0507)	(0.0514)	(0.0577)	(0.0734)	(0.0711)	(0.0643)
	completed primary	-0.138***	-0.0489	0.0925**	0.0435	-0.0544	0.0269
		(0.0404)	(0.0336)	(0.0442)	(0.0556)	(0.0493)	(0.0450)
	completed junior high school	-0.0837	-0.0249	0.0700	0.0325	-0.0497	0.00167
		(0.0654)	(0.0553)	(0.109)	(0.120)	(0.0830)	(0.102)
	at least some primary * java	0.0557	0.0683	0.0270	-0.0679	-0.00976	0.0451
		(0.0589)	(0.0614)	(0.0705)	(0.0891)	(0.0836)	(0.0772)
	completed primary * java	0.117**	0.0161	-0.0306	-0.0777	0.0700	-0.0461
		(0.0492)	(0.0399)	(0.0547)	(0.0658)	(0.0604)	(0.0588)
	completed Jr. H school * java	0.0125	0.0898	0.159	-0.154	0.0186	-0.00509
		(0.0826)	(0.0766)	(0.138)	(0.139)	(0.112)	(0.126)

Respondent's age	$60-65$ $65-70$ $70-75$ $75-80$ $80-$	0.0326 (0.0224) $\mathbf{0 . 0 7 8 8 * * *}$ (0.0232) $\mathbf{0 . 1 5 7 * * *}$ (0.0321) $\mathbf{0 . 2 0 5} * *$ (0.0411) $\mathbf{0 . 2 0 4 * *}$ (0.0432)	$\begin{gathered} \hline \mathbf{0 . 0 3 2 0} \\ (0.0183) \\ \mathbf{0 . 1 3 0 * * *} \\ (0.0218) \\ \mathbf{0 . 1 6 5 * * *} \\ (0.0265) \\ \mathbf{0 . 1 4 6 * * *} \\ (0.0313) \\ \mathbf{0 . 2 0 7 * *} \\ (0.0370) \\ \hline \end{gathered}$	-0.0279 (0.0220) $-0.0634^{* * *}$ (0.0195) $-0.103^{* * *}$ (0.0220) $-\mathbf{0 . 0 6 8 5 * *}$ (0.0281) $-0.114^{* * *}$ (0.0247)	$\begin{gathered} \hline-\mathbf{0 . 0 4 9 3 * *} \\ (0.0229) \\ -0.101^{* * *} \\ (0.0239) \\ -0.152^{* * *} \\ (0.0249) \\ -0.142^{* * *} \\ (0.0291) \\ -0.210^{* * *} \\ (0.0285) \\ \hline \end{gathered}$	$\begin{gathered} \hline 0.0385 \\ (0.0237) \\ \mathbf{0 . 1 1 5 * * *} \\ (0.0265) \\ \mathbf{0 . 2 1 3})^{* * *} \\ (0.0321) \\ \mathbf{0 . 2 1 0}) \\ (0.0445) \\ \mathbf{0 . 2 8 9 * * *} \\ (0.0405) \\ \hline \end{gathered}$	$\begin{gathered} \hline 0.0415 \\ (0.0253) \\ \mathbf{0 . 0 9 0 3 ^ { * * * }} \\ (0.0249) \\ \mathbf{0 . 1 2 1 * * *} \\ (0.0304) \\ \mathbf{0 . 1 8 6}{ }^{* * *} \\ (0.0377) \\ \mathbf{0 . 2 6 9 * *} \\ (0.0387) \\ \hline \end{gathered}$
Constant		$\begin{gathered} 0.0548 \\ (0.0592) \end{gathered}$	$\begin{aligned} & -0.0271 \\ & (0.0382) \end{aligned}$	$\begin{gathered} \hline \mathbf{0 . 3 2 3 * * *} \\ (0.112) \end{gathered}$	$\begin{gathered} \mathbf{0 . 6 7 4} * * * \\ (0.0798) \end{gathered}$	$\begin{gathered} \hline \mathbf{0 . 2 3 4 * * *} \\ (0.0836) \end{gathered}$	$\begin{gathered} 0.362 * * * \\ (0.0866) \end{gathered}$
R-squared		0.111	0.113	0.092	0.132	0.128	0.099
Sample size		2974	3482	2974	3482	2979	3474
Birth Place (kabupatan) dummy variables		Yes	Yes	Yes	Yes	Yes	Yes
F-test (p-values)							
Age dummy variables		0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Parents' Edu dummy variables * java		0.1215	0.2495	0.5372	0.0581	0.7007	0.6684
Parents' Edu dum + parents' Edu dum * java		0.0003	0.0001	0.0000	0.0000	0.2886	0.6435
Parents' death dummy variables * java		0.4563	0.8946	0.8071	0.4030	0.4786	0.1507
Parents' death dum + Parents' death dum * java		0.0660	0.0159	0.3407	0.0608	0.0215	0.3757
Parents' GHS dummy variables * java		0.9424	0.0274	0.9943	0.7120	0.4810	0.7923
Parents' GHS dum + Parents' GHS dum * java		0.9959	0.0822	0.9771	0.7379	0.5436	0.6197
Parents' ADL dummy variables * java		0.3507	0.3056	0.2016	0.1986	0.4598	0.2674
Parents' ADL dum + Parents' ADL dum * java		0.6874	0.4224	0.1953	0.1070	0.6777	0.0799
Parents' death, GHS, ADL dum * java		0.6926	0.2041	0.6558	0.4568	0.6456	0.2746
Parents' health + Parents' death, GHS, ADL * java		0.3002	0.0367	0.4459	0.0862	0.1432	0.2700
Parents' death, GHS, ADL + education dum * java		0.3512	0.2328	0.6690	0.1144	0.8310	0.5703
Birth place (kabupatan) dummy variables		0.0000	0.0000	0.0000	0.0000	0.0000	0.0000

Source: IFLS4

Note: Standard errors in parenthesis (clustered at community level).
$* * *$ significant at $1 \%, * *$ significant at $5 \%, *$ significant at 10%. Dummy variables capturing missing observations are included in the regression for each of the following variables: father/mother's education, father/mother's GHS and father/mother's ADL but not reported in the table.

Table 3_c. Parental SES Gradients of Health of Older Adults: Interactions with Birth Region

		Hypertension		Cholesterol (>=240)		HDL (<40)	
		MEN	WOMEN	M EN	WOMEN	MEN	WOMEN
Death	Father	$\begin{gathered} \hline 0.0134 \\ (0.0698) \end{gathered}$	$\begin{aligned} & \hline-0.0498 \\ & (0.0728) \end{aligned}$	$\begin{aligned} & \text { 0.0644* } \\ & (0.0338) \end{aligned}$	$\begin{gathered} \hline 0.0137 \\ (0.0541) \end{gathered}$	$\begin{gathered} \hline 0.0323 \\ (0.0574) \end{gathered}$	$\begin{aligned} & \hline-0.126^{*} \\ & (0.0709) \end{aligned}$
	Father * java	$\begin{gathered} 0.0250 \\ (0.0824) \end{gathered}$	$\begin{gathered} 0.0932 \\ (0.0839) \end{gathered}$	$\begin{aligned} & -0.0847 * \\ & (0.0463) \end{aligned}$	$\begin{gathered} 0.0143 \\ (0.0667) \end{gathered}$	$\begin{aligned} & -0.0580 \\ & (0.0763) \end{aligned}$	$\begin{gathered} 0.125 \\ (0.0827) \end{gathered}$
	Mother	$\begin{aligned} & 0.105^{* *} \\ & (0.0468) \end{aligned}$	$\begin{gathered} 0.0604 \\ (0.0439) \end{gathered}$	$\begin{gathered} -0.0384 \\ (0.0295) \end{gathered}$	$\begin{gathered} 0.0106 \\ (0.0348) \end{gathered}$	$\begin{gathered} 0.0383 \\ (0.0466) \end{gathered}$	$\begin{aligned} & -0.0109 \\ & (0.0502) \end{aligned}$
	Mother * java	$\begin{aligned} & -0.0692 \\ & (0.0562) \end{aligned}$	$\begin{aligned} & -0.0103 \\ & (0.0521) \end{aligned}$	$\begin{gathered} 0.0493 \\ (0.0358) \end{gathered}$	$\begin{aligned} & -0.0294 \\ & (0.0418) \end{aligned}$	$\begin{aligned} & 0.000411 \\ & (0.0553) \end{aligned}$	$\begin{aligned} & -0.0217 \\ & (0.0566) \end{aligned}$
GHS	Father	$\begin{gathered} 0.0318 \\ (0.0414) \end{gathered}$	$\begin{gathered} -0.00139 \\ (0.0469) \end{gathered}$	$\begin{aligned} & 0.00602 \\ & (0.0258) \end{aligned}$	$\begin{gathered} 0.0143 \\ (0.0325) \end{gathered}$	$\begin{aligned} & -0.0152 \\ & (0.0402) \end{aligned}$	$\begin{aligned} & -0.0596 \\ & (0.0425) \end{aligned}$
	Father * java	$\begin{aligned} & -0.0146 \\ & (0.0504) \end{aligned}$	$\begin{aligned} & -0.00606 \\ & (0.0520) \end{aligned}$	$\begin{gathered} 0.0150 \\ (0.0324) \end{gathered}$	$\begin{aligned} & -0.0472 \\ & (0.0384) \end{aligned}$	$\begin{gathered} 0.0344 \\ (0.0492) \end{gathered}$	$\begin{gathered} 0.0572 \\ (0.0493) \end{gathered}$
	Mother	$\begin{gathered} 0.0121 \\ (0.0424) \end{gathered}$	$\begin{aligned} & -0.00645 \\ & (0.0411) \end{aligned}$	$\begin{aligned} & -0.0203 \\ & (0.0265) \end{aligned}$	$\begin{gathered} -0.0318 \\ (0.0316) \end{gathered}$	$\begin{aligned} & 0.00633 \\ & (0.0389) \end{aligned}$	$\begin{gathered} 0.0242 \\ (0.0401) \end{gathered}$
	Mother * java	$\begin{aligned} & -0.0368 \\ & (0.0509) \end{aligned}$	$\begin{gathered} 0.0249 \\ (0.0493) \end{gathered}$	$\begin{gathered} 0.0342 \\ (0.0324) \end{gathered}$	$\begin{gathered} 0.0552 \\ (0.0398) \end{gathered}$	$\begin{aligned} & -0.0861^{*} \\ & (0.0468) \end{aligned}$	$\begin{aligned} & 0.00131 \\ & (0.0467) \end{aligned}$
ADL	Father	$\begin{aligned} & \hline-0.0301 \\ & (0.0459) \end{aligned}$	$\begin{gathered} \hline 0.0155 \\ (0.0422) \end{gathered}$	$\begin{aligned} & -0.00125 \\ & (0.0241) \end{aligned}$	$\begin{gathered} -0.00693 \\ (0.0331) \end{gathered}$	$\begin{aligned} & \hline-0.0201 \\ & (0.0475) \end{aligned}$	$\begin{gathered} \hline 0.0992^{* *} \\ (0.0435) \end{gathered}$
	Father * java	$\begin{gathered} 0.0353 \\ (0.0582) \end{gathered}$	$\begin{aligned} & -0.00915 \\ & (0.0505) \end{aligned}$	$\begin{aligned} & 0.00475 \\ & (0.0349) \end{aligned}$	$\begin{gathered} 0.0258 \\ (0.0431) \end{gathered}$	$\begin{gathered} 0.0288 \\ (0.0609) \end{gathered}$	$\begin{gathered} -0.0575 \\ (0.0524) \end{gathered}$
	Mother	$\begin{aligned} & -0.0256 \\ & (0.0462) \end{aligned}$	$\begin{aligned} & -0.0264 \\ & (0.0397) \end{aligned}$	$\begin{aligned} & -0.00754 \\ & (0.0237) \end{aligned}$	$\begin{aligned} & 0.00250 \\ & (0.0370) \end{aligned}$	$\begin{gathered} -0.00470 \\ (0.0416) \end{gathered}$	$\begin{aligned} & -0.0609 \\ & (0.0418) \end{aligned}$
	Mother * java	$\begin{gathered} 0.0360 \\ (0.0576) \end{gathered}$	$\begin{gathered} 0.0292 \\ (0.0498) \end{gathered}$	$\begin{aligned} & 0.00540 \\ & (0.0334) \end{aligned}$	$\begin{gathered} -0.0177 \\ (0.0452) \end{gathered}$	$\begin{gathered} 0.0286 \\ (0.0574) \end{gathered}$	$\begin{aligned} & -0.00623 \\ & (0.0508) \end{aligned}$
Father's Education	at least some primary	-0.119*	0.0734	-0.0725**	-0.0311	0.00844	-0.129**
		(0.0705)	(0.0649)	(0.0287)	(0.0498)	(0.0561)	(0.0628)
	completed primary	0.0229	-0.0105	0.0166	0.0601	-0.0391	-0.119***
		(0.0521)	(0.0421)	(0.0283)	(0.0366)	(0.0445)	(0.0431)
	completed junior high school	$\begin{gathered} 0.0397 \\ (0.0731) \end{gathered}$	$\begin{gathered} -0.0612 \\ (0.0895) \end{gathered}$	$\begin{gathered} 0.0460 \\ (0.0505) \end{gathered}$	$\begin{gathered} 0.0697 \\ (0.0647) \end{gathered}$	$\begin{aligned} & -0.0876 \\ & (0.0794) \end{aligned}$	$\begin{aligned} & -0.0760 \\ & (0.0886) \end{aligned}$
	at least some primary * java	0.101	-0.0979	0.0809**	0.0210	0.0208	0.181**
		(0.0825)	(0.0780)	(0.0400)	(0.0625)	(0.0709)	(0.0761)
	completed primary * java	0.0120	-0.0213	0.0164	0.0203	0.0112	0.0972*
		(0.0628)	(0.0515)	(0.0361)	(0.0452)	(0.0540)	(0.0510)
	completed Jr. H school * java	0.00211 (0.0965)	0.0600 (0.104)	$\begin{aligned} & -0.0310 \\ & (0.0665) \end{aligned}$	$\begin{aligned} & -0.0160 \\ & (0.0821) \end{aligned}$	$\begin{gathered} 0.184^{*} \\ (0.0981) \end{gathered}$	$\begin{aligned} & 0.0585 \\ & (0.107) \end{aligned}$
Mother's Education	at least some primary	-0.0724	0.0850	0.0197	-0.0679	-0.0620	0.174**
		(0.0782)	(0.0678)	(0.0436)	(0.0431)	(0.0738)	(0.0730)
	completed primary	0.0258	-0.0312	0.00646	0.0228	0.0254	0.0209
		(0.0506)	(0.0520)	(0.0323)	(0.0442)	(0.0544)	(0.0478)
	completed junior high school	-0.0720	0.000485	-0.0224	0.0151	0.255***	-0.0139
		(0.115)	(0.116)	(0.0762)	(0.0873)	(0.0902)	(0.116)
	at least some primary * java	0.0243	-0.0705	0.0362	-0.00809	0.0430	-0.161*
		(0.0931)	(0.0834)	(0.0558)	(0.0571)	(0.0908)	(0.0888)
	completed primary * java	0.00637	0.0427	0.00579	-0.0969*	-0.00580	-0.0440
		(0.0654)	(0.0654)	(0.0408)	(0.0544)	(0.0658)	(0.0590)
	completed Jr. H school * java	0.225	0.0166	0.0537	0.0823	-0.259**	-0.0802
		(0.140)	(0.140)	(0.106)	(0.120)	(0.124)	(0.144)

Source: IFLS4

Note: Standard errors in parenthesis (clustered at community level).
$* * *$ significant at $1 \%, * *$ significant at $5 \%, *$ significant at 10%. Dummy variables capturing missing observations are included in the regression for each of the following variables: father/mother's education, father/mother's GHS and father/mother's ADL but not reported in the table.

Table 3_d. Parental SES Gradients of Health of Older Adults: Interactions with Birth Region

		Cognition		Depression	
		M EN	WOMEN	MEN	WOMEN
Death	Father	-0.0485	-0.197	0.196	0.589
		(0.227)	(0.259)	(0.414)	(0.659)
	Father * java	-0.0653	-0.187	-0.324	-0.392
		(0.277)	(0.296)	(0.550)	(0.740)
	Mother	-0.158	-0.0352	0.253	0.462
		(0.135)	(0.150)	(0.336)	(0.426)
	Mother * java	0.0175	0.0105	-0.138	-0.274
		(0.163)	(0.177)	(0.388)	(0.466)
GHS	Father	-0.0996	-0.134	0.517	0.229
		(0.133)	(0.142)	(0.333)	(0.335)
	Father * java	0.0841	0.166	-0.279	-0.192
		(0.167)	(0.170)	(0.369)	(0.377)
	Mother	-0.224*	0.128	0.287	0.776**
		(0.124)	(0.135)	(0.319)	(0.332)
	Mother * java	0.235	-0.306*	-0.0143	-0.313
		(0.161)	(0.162)	(0.357)	(0.384)
ADL	Father	-0.0655	0.189	-0.157	0.445
		(0.141)	(0.175)	(0.353)	(0.409)
	Father * java	0.0463	-0.299	0.353	-0.250
		(0.190)	(0.207)	(0.419)	(0.463)
	Mother	0.205	0.109	0.281	-0.475
		(0.137)	(0.136)	(0.323)	(0.379)
	Mother * java	-0.398**	0.0902	-0.0550	0.354
		(0.181)	(0.168)	(0.386)	(0.422)
Father's Education	at least some primary	0.459*	0.445*	-0.187	-0.428
		(0.249)	(0.238)	(0.396)	(0.478)
	completed primary	0.0850	0.564***	-0.661**	-0.640**
		(0.163)	(0.143)	(0.332)	(0.320)
	completed junior high school	0.294	1.150***	-0.110	-1.347**
		(0.229)	(0.309)	(0.486)	(0.614)
	at least some primary * java	0.0411	-0.0655	0.153	-0.00427
		(0.288)	(0.279)	(0.501)	(0.557)
	completed primary * java	0.0952	-0.0434	0.274	0.263
		(0.192)	(0.176)	(0.379)	(0.380)
	completed junior high school * java	0.224	0.180	0.268	0.290
		(0.313)	(0.358)	(0.649)	(0.732)
Mother's Education	at least some primary	-0.615**	0.313	-0.867*	-0.219
		(0.269)	(0.261)	(0.448)	(0.478)
	completed primary	0.535***	0.0871	-0.125	-0.261
		(0.162)	(0.141)	(0.314)	(0.419)
	completed junior high school	0.370	0.976***	-0.293	-1.597**
		(0.426)	(0.347)	(0.852)	(0.684)
	at least some primary * java	0.748**	-0.265	0.348	0.402
		(0.308)	(0.316)	(0.550)	(0.640)
	completed primary * java	-0.278	0.184	-0.338	-0.0448
		(0.199)	(0.198)	(0.380)	(0.493)
	completed junior high school * java	-0.170	-1.163***	-0.119	2.273**
		(0.494)	(0.435)	(0.995)	(0.907)

Respondent's age	$\begin{aligned} & 60-65 \\ & 65-70 \\ & 70-75 \\ & 75-80 \\ & 80- \end{aligned}$	$\begin{gathered} \hline-0.385^{* * *} \\ (0.0940) \\ -0.542^{* * *} \\ (0.0948) \\ -0.836^{* * *} \\ (0.117) \\ -1.161^{* * *} \\ (0.148) \\ -1.494^{* * *} \\ (0.165) \end{gathered}$	$\begin{gathered} \hline-0.299^{* * *} \\ (0.0896) \\ -0.578^{* * *} \\ (0.0915) \\ -0.695^{* *} * \\ (0.127) \\ -1.016^{* *} \\ (0.167) \\ -1.333^{* * *} \\ (0.230) \end{gathered}$	$\begin{gathered} \hline-0.167 \\ (0.154) \\ \mathbf{0 . 3 2 5} * \\ (0.183) \\ \mathbf{0 . 4 1 8 ^ { * * }} \\ (0.212) \\ \mathbf{0 . 9 4 6 * *} \\ (0.301) \\ \mathbf{1 . 5 0 5 * * *} \\ (0.365) \end{gathered}$	-0.247 (0.164) 0.138 (0.188) 0.202 (0.228) 0.517^{*} (0.290) $1.281^{* * *}$ (0.339)
Constant		$\begin{gathered} \hline \text { 4.744*** } \\ (0.245) \end{gathered}$	$\begin{gathered} \text { 4.287*** } \\ (0.267) \end{gathered}$	$\begin{gathered} \text { 3.396*** } \\ (0.528) \end{gathered}$	$\begin{gathered} \text { 3.140*** } \\ (0.671) \end{gathered}$
R-squared		0.211	0.260	0.111	0.111
Sample size		2317	2309	2830	3222
Birth Place (kabupatan) dummy variables		Yes	Yes	Yes	Yes
F-test (p-values)					
Age dummy variab Parents' Edu dumm Parents' Edu dum Parents' death dum Parents' death dum Parents' GHS dumm Parents' GHS dum Parents' ADL dumm Parents' ADL dum Parents' death, GH Parents' health + Parents' death, GH Birth place (kabup	ariables * java rents' Edu dum * java variables * java Parents' death dum * java variables * java rents' GHS dum * java ariables * java rents' ADL dum * java ODL dum * java ts' death, GHS, ADL * java DL + education dum * java dummy variables	0.0000 0.0214 0.0000 0.9718 0.3285 0.1534 0.2235 0.0584 0.1869 0.2250 0.0731 0.0193 0.0000	0.0000 0.0540 0.0000 0.8129 0.1399 0.1691 0.2669 0.3480 0.1204 0.4759 0.0778 0.0863 0.0000	0.0000 0.9552 0.0013 0.7385 0.8387 0.6508 0.0032 0.6549 0.3896 0.8870 0.0011 0.9837 0.0000	0.0001 0.1099 0.0000 0.6631 0.3994 0.3926 0.0014 0.6995 0.6088 0.6929 0.0027 0.1700 0.0000

Source: IFLS4
Note: Standard errors in parenthesis (clustered at community level).
*** significant at $1 \%, * *$ significant at $5 \%, *$ significant at 10%. Dummy variables capturing missing observations are included in the regression for each of the following variables: father/mother's education, father/mother's GHS and father/mother's ADL but not reported in the table.

Table 4. Parental SES Gradients of Respondents Schooling and Height
Education year
Height

		Men	Women	Men	Women
Death	Mother	$\begin{gathered} -0.00707 \\ (0.363) \\ -0.429^{*} \\ (0.227) \end{gathered}$	$\begin{gathered} 0.0275 \\ (0.301) \\ -0.152 \\ (0.166) \end{gathered}$	$\begin{gathered} -0.163 \\ (0.802) \\ -0.170 \\ (0.484) \end{gathered}$	$-1.206^{* *}$ (0.480) 0.333 (0.557)
GHS	Father Mother	$\begin{gathered} \hline-0.511^{* * *} \\ (0.194) \\ 0.0732 \\ (0.194) \\ \hline \end{gathered}$	$\begin{gathered} -0.215 \\ (0.152) \\ -0.166 \\ (0.138) \\ \hline \end{gathered}$	$\begin{gathered} 0.688 \\ (0.480) \\ -0.203 \\ (0.448) \end{gathered}$	$\begin{gathered} 0.550 \\ (0.508) \\ -0.615 \\ (0.534) \\ \hline \end{gathered}$
ADL	Father Mother	$\begin{gathered} \hline 0.136 \\ (0.218) \\ -0.0633 \\ (0.221) \\ \hline \end{gathered}$	$\begin{aligned} & 0.0251 \\ & (0.174) \\ & \mathbf{0 . 2 7 5 *} \\ & (0.153) \end{aligned}$	$\begin{gathered} \hline 0.311 \\ (0.423) \\ -0.0862 \\ (0.437) \\ \hline \end{gathered}$	$\begin{gathered} -0.422 \\ (0.669) \\ -0.327 \\ (0.712) \\ \hline \end{gathered}$
Father's Education	at least some primary completed primary completed junior high school	$\begin{gathered} \hline 1.664 * * * \\ (0.318) \\ 2.242^{* * *} \\ (0.245) \\ 3.779 * * * \\ (0.423) \end{gathered}$	$\begin{gathered} \hline \mathbf{1 . 6 6 5 * * *} \\ (0.282) \\ 2.037 * * \\ (0.204) \\ 5.339 * * * \\ (0.378) \end{gathered}$	$\begin{gathered} \hline 0.342 \\ (0.703) \\ \mathbf{1 . 0 9 9 *} \\ (0.567) \\ 2.139 * * * \\ (0.686) \end{gathered}$	-0.655 (1.015) 0.463 (0.480) -1.434 (1.810)
Mother's Education	at least some primary completed primary completed junior high school	$\begin{gathered} \hline \mathbf{0 . 9 8 0 ^ { * * * }} \\ (0.348) \\ 1.5022^{* *} \\ (0.266) \\ 2.905^{* * *} \\ (0.584) \\ \hline \end{gathered}$	$\begin{gathered} \hline 1.101^{* * *} \\ (0.327) \\ 1.837^{* * *} \\ (0.237) \\ 3.512^{* * *} \\ (0.496) \\ \hline \end{gathered}$	$\begin{gathered} \hline-0.891 \\ (1.002) \\ -0.534 \\ (0.633) \\ 1.824^{* *} \\ (0.852) \\ \hline \end{gathered}$	$\begin{gathered} \hline 1.569 \\ (1.189) \\ 0.610 \\ (0.631) \\ 5.803^{* * *} \\ (1.591) \end{gathered}$
Respondent's age	$\begin{aligned} & 60-65 \\ & 65-70 \\ & 70-75 \\ & 75-80 \\ & 80- \end{aligned}$	-0.355^{*} (0.214) -0.0905 (0.222) $-1.397 * *$ (0.254) $-2.484^{* * *}$ (0.297) $-2.473^{* * *}$ (0.290)	$\begin{gathered} \hline-0.507^{* * *} \\ (0.167) \\ -1.263^{* * *} \\ (0.163) \\ -1.928^{* * *} \\ (0.184) \\ -2.084^{* * *} \\ (0.200) \\ -2.398 * * \\ (0.195) \\ \hline \end{gathered}$	$-1.806^{* * *}$ (0.484) $-2.067^{* * *}$ (0.597) $-2.982^{* * *}$ (0.661) $-4.571^{* * *}$ (0.873) $-5.675^{* * *}$ (1.127)	$-1.678^{* * *}$ (0.526) $-2.483^{* * *}$ (0.506) $-4.262^{* * *}$ (0.633) $-4.346^{* * *}$ (0.772) $-6.910^{* * *}$ (0.762)
Constant		$\begin{gathered} \hline 7.354^{* * *} \\ (0.871) \end{gathered}$	$\begin{gathered} \hline \text { 3.828*** } \\ (0.436) \\ \hline \end{gathered}$	$\begin{gathered} \hline \mathbf{1 6 0 . 3 ^ { * * * }} \\ (1.186) \end{gathered}$	$\begin{gathered} \hline 145.8^{* * *} \\ (3.706) \end{gathered}$
R-squared		0.337	0.458	0.110	0.096
Sample size		3081	3608	3081	3608
Birth Place (kabupatan) dummy variables		Yes	Yes	Yes	Yes
F-test (p-values)					
Age dummy variables Parent's education dum Parent's death dummy Parent's GHS dummy Parent's ADL dummy v Parent's health (death, Parent's health (death, Birth Place dummy vari	riables les s ADL) dummy variables ADL) + education dummy variables (kabupatan level)	$\begin{aligned} & 0.0000 \\ & 0.0000 \\ & 0.1608 \\ & 0.0152 \\ & 0.8207 \\ & 0.0433 \\ & 0.0000 \\ & 0.0000 \end{aligned}$	$\begin{aligned} & 0.0000 \\ & 0.0000 \\ & 0.6571 \\ & 0.0358 \\ & 0.0687 \\ & 0.1175 \\ & 0.0000 \\ & 0.0000 \end{aligned}$	$\begin{aligned} & 0.0000 \\ & 0.0000 \\ & 0.8910 \\ & 0.3434 \\ & 0.7544 \\ & 0.7408 \\ & 0.0002 \\ & 0.0000 \end{aligned}$	$\begin{aligned} & 0.0000 \\ & 0.0000 \\ & 0.0428 \\ & 0.4222 \\ & 0.4221 \\ & 0.1385 \\ & 0.0000 \\ & 0.0000 \end{aligned}$

Source: IFLS4

Note: Standard errors in parenthesis. (clustered at community level) . ${ }^{* * *}$ significant at $1 \%,{ }^{* *}$ significant at 5\%, * significant at 10\% .
Dummy variables capturing missing observations are included in the regression for each of the following variables: father/mother's education GHS and ADL
but not reported in the table.

Poor GHS \#ADL problems
\#IADL problems

		M EN		WOM EN		M EN		WOM EN		M EN		WOM EN	
Respondent's Edu	at least some primary	0.00976	0.0199	0.0427**	0.0552***	-0.408***	$-0.334 * * *$	-0.0588	0.00752	-0.342***	$-0.288 * * *$	-0.196***	-0.150***
		(0.0260)	(0.0260)	(0.0201)	(0.0204)	(0.118)	(0.115)	(0.0943)	(0.0982)	(0.0786)	(0.0734)	(0.0515)	(0.0528)
	completed primary	-0.00933	0.00931	0.0244	0.0380	-0.318**	-0.207*	-0.0197	0.0432	-0.363***	$-0.281 * * *$	$-0.191 * * *$	-0.136**
		(0.0252)	(0.0251)	(0.0235)	(0.0248)	(0.124)	(0.122)	(0.101)	(0.110)	(0.0792)	(0.0750)	(0.0634)	(0.0678)
	completed Jr. H school	-0.0524	-0.0313	-0.0265	-0.0106	-0.486***	$-0.364 * * *$	-0.0122	0.0748	-0.500***	-0.409***	$-0.254 * * *$	-0.178**
		(0.0320)	(0.0326)	(0.0334)	(0.0347)	(0.136)	(0.136)	(0.138)	(0.148)	(0.0926)	(0.0883)	(0.0747)	(0.0808)
	completed high school	-0.0930***	-0.0588**	-0.0558*	-0.0211	-0.512***	$-0.360 * * *$	-0.130	0.0318	-0.495***	-0.383***	$-0.422^{* * *}$	-0.306***
		(0.0276)	(0.0293)	(0.0302)	(0.0334)	(0.133)	(0.136)	(0.142)	(0.167)	(0.0815)	(0.0792)	(0.0756)	(0.0888)
Respondent's height	0 - median	0.00117	0.00124	0.000856	0.000882	0.00458	0.00614*	-0.00825***	-0.00783***	0.000148	0.00123	-0.00381*	-0.00355*
		(0.000832)	(0.000910)	(0.000921)	(0.000945)	(0.00328)	(0.00362)	(0.00315)	(0.00299)	(0.00212)	(0.00240)	(0.00205)	(0.00189)
	$>=$ median	-0.00166	-0.00149	0.00185	0.00203	-0.0154*	-0.0164^{*}	0.00705	0.00986	-0.00689	-0.00780	-0.00552	-0.00376
		(0.00240)	(0.00245)	(0.00239)	(0.00236)	(0.00837)	(0.00890)	(0.00889)	(0.00854)	(0.00552)	(0.00589)	(0.00516)	(0.00514)
Respondent's age	60-65	0.0515**	0.0464**	0.0364*	0.0212	0.365***	0.335***	0.647***	0.593***	0.183***	0.166***	0.419***	0.377***
		(0.0216)	(0.0220)	(0.0198)	(0.0211)	(0.0914)	(0.0905)	(0.0814)	(0.0832)	(0.0552)	(0.0550)	(0.0477)	(0.0492)
	65-70	0.139***	0.127***	0.0940***	0.0758***	0.917***	0.863***	1.156***	1.085***	0.556***	0.522***	0.677***	0.626***
		(0.0247)	(0.0254)	(0.0230)	(0.0234)	(0.102)	(0.102)	(0.0963)	(0.0964)	(0.0626)	(0.0633)	(0.0564)	(0.0569)
	70-75	0.207***	0.191***	0.152***	0.123***	1.437***	1.338***	1.762***	1.625***	0.913***	0.846***	1.124***	1.025***
		(0.0292)	(0.0282)	(0.0283)	(0.0293)	(0.146)	(0.145)	(0.128)	(0.130)	(0.0930)	(0.0920)	(0.0831)	(0.0818)
	75-80	0.210***	0.190***	0.162***	0.131***	1.525***	1.404***	2.606***	2.475***	1.115***	1.037***	1.717***	1.609***
		(0.0348)	(0.0350)	(0.0337)	(0.0351)	(0.173)	(0.173)	(0.182)	(0.181)	(0.114)	(0.113)	(0.105)	(0.106)
	80-	0.249***	0.214***	0.226***	0.189***	3.045***	2.805***	3.397***	3.196***	1.715***	1.552***	2.085***	1.933***
		(0.0380)	(0.0385)	(0.0338)	(0.0350)	(0.218)	(0.205)	(0.182)	(0.179)	(0.135)	(0.129)	(0.0978)	(0.0954)
Death	Father		-0.00577		0.00685		-0.0423		0.200**		0.0488		0.109*
			(0.0300)		(0.0306)		(0.0997)		(0.101)		(0.0569)		(0.0574)
	Mother		-0.0113		0.0726***		0.0213		0.0889		-0.0458		0.0792*
			(0.0196)		(0.0216)		(0.0652)		(0.0809)		(0.0396)		(0.0447)
GHS	Father		0.0304		0.0584***		0.154**		0.0814		0.105**		0.0112
			(0.0200)		(0.0195)		(0.0731)		(0.0811)		(0.0469)		(0.0477)
	Mother		0.0516**		0.0118		0.131		0.134		0.115**		0.0893*
			(0.0211)		(0.0216)		(0.0809)		(0.0863)		(0.0498)		(0.0481)
ADL	Father		0.0223		-0.00502		0.0198		0.211**		0.0249		0.0865*
			(0.0242)		(0.0217)		(0.0848)		(0.0861)		(0.0545)		(0.0487)
	Mother		-0.0114		-0.00856		0.0258		-0.0969		-0.00696		-0.0353
			(0.0232)		(0.0224)		(0.0893)		(0.0920)		(0.0527)		(0.0519)
Father's Education	at least some primary		-0.0132		-0.0383		-0.0945		-0.129		$-0.162 * * *$		-0.0642

Source: IFLS4

Note: Standard errors in parenthesis. (clustered at community level) *** significant at 1\%, ** significant at 5\%, * significant at 10\%

Table 5_b. Health-SES Gradients of Older Adults

BMI (< 18.5)
BMI (>=25)
Hemoglobin ($\mathrm{M}<13, \mathrm{w}<12$)

		MEN		WOM EN		M EN		WOM EN		M EN		WOM EN	
Respondent's Edu	at least some prim	-0.0468*	-0.0368	-0.0281	-0.0214	0.0298*	0.0258	0.0714***	0.0599***	-0.0732**	-0.0661**	0.00221	0.00481
		(0.0266)	(0.0265)	(0.0210)	(0.0218)	(0.0163)	(0.0166)	(0.0211)	(0.0217)	(0.0291)	(0.0293)	(0.0215)	(0.0223)
	completed primary	-0.0780***	-0.0673**	$-0.0956^{* *}$	$-0.0856^{* *}$	0.0705***	0.0593***	0.150***	0.133***	-0.0620**	-0.0570*	-0.0371	-0.0287
		(0.0264)	(0.0267)	(0.0213)	(0.0222)	(0.0191)	(0.0196)	(0.0236)	(0.0244)	(0.0297)	(0.0302)	(0.0265)	(0.0274)
	completed Jr. H school	$-0.117^{* * *}$	$-0.0974^{* * *}$	$-0.124 * * *$	-0.112***	0.168***	0.146***	0.209***	0.184***	-0.105***	-0.0908**	-0.0295	-0.0188
		(0.0319)	(0.0326)	(0.0268)	(0.0289)	(0.0319)	(0.0330)	(0.0398)	(0.0419)	(0.0378)	(0.0378)	(0.0367)	(0.0382)
	completed high school	$-0.192 * * *$	-0.167***	$-0.135^{* * *}$	$-0.118^{* * *}$	0.261***	0.230***	0.273***	0.241***	-0.146***	-0.139***	-0.0945***	-0.0813**
		(0.0274)	(0.0281)	(0.0222)	(0.0264)	(0.0262)	(0.0282)	(0.0336)	(0.0391)	(0.0320)	(0.0330)	(0.0332)	(0.0369)
Respondent's height	0-median	0.00108	0.00128*	0.00159**	0.00168**	-0.00695***	-0.00704***	-0.00481***	-0.00497***	-0.00145	-0.00113	0.00131	0.00130
		(0.000660)	(0.000667)	(0.000730)	(0.000727)	(0.000822)	(0.000840)	(0.000969)	(0.000940)	(0.00116)	(0.00115)	(0.000810)	(0.000819)
	>= median	0.00436*	0.00428*	-0.000974	-0.00123	0.0127***	0.0126***	0.00198	0.00222	-0.00212	-0.00253	-0.000692	-0.000552
		(0.00224)	(0.00226)	(0.00234)	(0.00234)	(0.00253)	(0.00252)	(0.00259)	(0.00254)	(0.00270)	(0.00269)	(0.00256)	(0.00255)
Respondent's age	60-65	0.0444**	0.0379*	0.0374**	0.0267	-0.0239	-0.0195	$-0.0607^{* *}$	-0.0438*	0.0409*	0.0321	0.0432*	0.0398
		(0.0223)	(0.0222)	(0.0183)	(0.0187)	(0.0213)	(0.0213)	(0.0224)	(0.0232)	(0.0243)	(0.0240)	(0.0248)	(0.0254)
	65-70	0.1000***	0.0851***	0.132***	0.118***	$-0.0822^{* * *}$	-0.0696***	-0.106***	-0.0861***	0.124***	0.109***	0.0882***	0.0867***
		(0.0223)	(0.0231)	(0.0217)	(0.0219)	(0.0185)	(0.0190)	(0.0230)	(0.0241)	(0.0252)	(0.0263)	(0.0246)	(0.0254)
	70-75	0.168***	0.150***	0.168***	0.150***	$-0.0970 * * *$	$-0.0866^{* *}$	-0.159***	$-0.132 * * *$	0.209***	0.192***	0.122***	0.119***
		(0.0319)	(0.0326)	(0.0266)	(0.0266)	(0.0210)	(0.0215)	(0.0252)	(0.0259)	(0.0318)	(0.0327)	(0.0297)	(0.0310)
	75-80	0.213***	0.193***	0.146***	0.129***	-0.0579**	-0.0448	-0.153***	-0.120***	0.201***	0.179***	0.187***	0.182***
		(0.0412)	(0.0414)	(0.0310)	(0.0317)	(0.0277)	(0.0283)	(0.0292)	(0.0305)	(0.0444)	(0.0444)	(0.0388)	(0.0392)
	$80-$	0.213***	0.192***	0.208***	0.191***	-0.104***	-0.0911***	$-0.222 * * *$	-0.192***	0.279***	0.255***	0.276***	0.269***
		(0.0424)	(0.0436)	(0.0386)	(0.0390)	(0.0240)	(0.0251)	(0.0276)	(0.0291)	(0.0418)	(0.0419)	(0.0392)	(0.0402)
Death	Father		-0.00188		0.0548**		0.0425		-0.0103		0.00592		0.0126
			(0.0277)		(0.0213)		(0.0321)		(0.0370)		(0.0343)		(0.0349)
	Mother		0.0401**		0.0301*		-0.0312		-0.0643**		0.0652***		0.0104
							(0.0220)		(0.0258)		(0.0221)		(0.0212)
GHS	Father		-0.00758		-0.00981		0.00720		0.0180		-0.0242		0.0160
			(0.0193)		(0.0169)		(0.0195)		(0.0208)		(0.0205)		(0.0225)
	Mother		0.00468		0.00413		-0.00932		-0.0204		-0.00608		-0.0361*
			(0.0203)		(0.0168)		(0.0195)		(0.0218)		(0.0218)		(0.0219)
ADL	Father		-0.00573		0.0178		-0.0284		-0.0319		0.0221		-0.0349
			(0.0225)		(0.0184)		(0.0221)		(0.0224)		(0.0256)		(0.0247)
	Mother		0.00929		-0.0156		0.0106		0.0365		-0.0205		0.0483**
			(0.0204)		(0.0171)		(0.0222)		(0.0240)		(0.0239)		(0.0236)

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Father's Education \& \begin{tabular}{l}
at least some primary \\
completed primary \\
completed Jr. H school
\end{tabular} \& \& \[
\begin{aligned}
\& -0.00208 \\
\& (0.0271) \\
\& 0.00566 \\
\& (0.0215) \\
\& -0.0109 \\
\& (0.0334)
\end{aligned}
\] \& \& \[
\begin{gathered}
0.0219 \\
(0.0324) \\
-0.00319 \\
(0.0204) \\
-0.0422 \\
(0.0284)
\end{gathered}
\] \& \& \[
\begin{gathered}
0.0116 \\
(0.0303) \\
0.0298 \\
(0.0232) \\
0.00314 \\
(0.0429)
\end{gathered}
\] \& \& \[
\begin{gathered}
0.0121 \\
(0.0364) \\
\mathbf{0 . 0 6 3 6 * *} \\
(0.0273) \\
\mathbf{0 . 0 9 6 4 * *} \\
(0.0479)
\end{gathered}
\] \& \& \[
\begin{aligned}
\& -0.0410 \\
\& (0.0331) \\
\& -0.0164 \\
\& (0.0258) \\
\& -0.00911 \\
\& (0.0417)
\end{aligned}
\] \& \& \[
\begin{aligned}
\& -0.0275 \\
\& (0.0359) \\
\& -0.0253 \\
\& (0.0271) \\
\& -0.0432 \\
\& (0.0454)
\end{aligned}
\] \\
\hline Mother's Education \& \begin{tabular}{l}
at least some primary \\
completed primary \\
completed JR. H school
\end{tabular} \& \& \[
\begin{aligned}
\& -0.0443 \\
\& (0.0279) \\
\& -0.0379 \\
\& (0.0240) \\
\& -0.0498 \\
\& (0.0387)
\end{aligned}
\] \& \& \[
\begin{gathered}
-0.00858 \\
(0.0298) \\
-0.0185 \\
(0.0197) \\
0.0594 \\
(0.0404)
\end{gathered}
\] \& \& \[
\begin{gathered}
-0.0295 \\
(0.0322) \\
0.0395 \\
(0.0258) \\
\mathbf{0 . 1 3 2 *} \\
(0.0684)
\end{gathered}
\] \& \& \[
\begin{gathered}
0.0447 \\
(0.0391) \\
-0.0393 \\
(0.0326) \\
-0.106 \\
(0.0694)
\end{gathered}
\] \& \& \[
\begin{gathered}
\mathbf{0 . 1 1 8 * * *} \\
(0.0390) \\
0.00720 \\
(0.0297) \\
-0.00322 \\
(0.0574)
\end{gathered}
\] \& \& \[
\begin{gathered}
0.0415 \\
(0.0363) \\
0.00804 \\
(0.0286) \\
0.0119 \\
(0.0608)
\end{gathered}
\] \\
\hline Constant \& \& \[
\begin{aligned}
\& -0.0155 \\
\& (0.118)
\end{aligned}
\] \& \[
\begin{aligned}
\& -0.0724 \\
\& (0.123)
\end{aligned}
\] \& \[
\begin{aligned}
\& -0.136 \\
\& (0.109)
\end{aligned}
\] \& \[
\begin{gathered}
-0.223^{* *} \\
(0.113)
\end{gathered}
\] \& \[
\begin{gathered}
1.327 * * * \\
(0.160)
\end{gathered}
\] \& \[
\begin{gathered}
\hline 1.313^{* * *} \\
(0.167)
\end{gathered}
\] \& \begin{tabular}{l}
\[
1.230^{* * *}
\] \\
(0.157)
\end{tabular} \& \[
\begin{gathered}
1.306 * * * \\
(0.159)
\end{gathered}
\] \& \[
\begin{gathered}
0.559 * * * \\
(0.194)
\end{gathered}
\] \& \[
\begin{gathered}
0.468^{* *} \\
(0.196)
\end{gathered}
\] \& \[
\begin{gathered}
\hline 0.200 \\
(0.140)
\end{gathered}
\] \& \[
\begin{aligned}
\& \hline 0.186 \\
\& (0.146)
\end{aligned}
\] \\
\hline R-squared \& \& 0.116 \& 0.122 \& 0.112 \& 0.118 \& 0.127 \& 0.135 \& 0.138 \& 0.147 \& 0.124 \& 0.133 \& 0.095 \& 0.098 \\
\hline \multicolumn{2}{|l|}{Sample size} \& 2974 \& 2974 \& 3482 \& 3482 \& 2974 \& 2974 \& 3482 \& 3482 \& 2979 \& 2979 \& 3474 \& 3474 \\
\hline \multicolumn{2}{|l|}{Birth Place (kabupatan) dummy variables} \& Yes \\
\hline \multicolumn{14}{|l|}{F-test (p-values)} \\
\hline \begin{tabular}{l}
Age dummy variables \\
Height variables \\
Education dummy va \\
Parent's death dumm \\
Parent's education du \\
Parent's GHS dummy \\
Parent's ADL dummy \\
Parent's health dumm \\
Parent's health + edu \\
Birth Place dummy va
\end{tabular} \& \begin{tabular}{l}
bles \\
variables \\
my variables \\
riables \\
riables \\
variables \\
tion dummy variables \\
ables (kabupatan level)
\end{tabular} \& 0.0000
0.0042
0.0000

0.0000 \& $$
\begin{aligned}
& \hline 0.0000 \\
& 0.0015 \\
& 0.0000 \\
& 0.0630 \\
& 0.3116 \\
& 0.9245 \\
& 0.9007 \\
& 0.2365 \\
& 0.1870 \\
& 0.0000
\end{aligned}
$$ \& 0.0000

0.0746
0.0000

0.0000 \& 0.0000
0.0559
0.0000
0.0026
0.3233
0.8456
0.5344
0.0297
0.0499

0.0000 \& $$
\begin{aligned}
& 0.0000 \\
& 0.0000 \\
& 0.0000 \\
& \\
& \\
& 0.0000
\end{aligned}
$$ \& 0.0001

0.0000
0.0000
0.2398
0.0529
0.8838
0.3985
0.5092
0.0835
0.0000 \& 0.0000
0.0000
0.0000

0.0000 \& $$
\begin{aligned}
& \hline 0.0000 \\
& 0.0000 \\
& 0.0000 \\
& 0.0374 \\
& 0.1020 \\
& 0.5936 \\
& 0.2390 \\
& 0.0729 \\
& 0.0200 \\
& 0.0000
\end{aligned}
$$ \& \& 0.0000

0.0741
0.0005
0.0118
0.1479
0.3106
0.6146
0.0474
0.0356

0.0000 \& $$
\begin{aligned}
& 0.0000 \\
& 0.2324 \\
& 0.0272 \\
& \\
& \\
& 0.0000
\end{aligned}
$$ \& \[

$$
\begin{aligned}
& \hline 0.0000 \\
& 0.2387 \\
& 0.1328 \\
& 0.8143 \\
& 0.8768 \\
& 0.2508 \\
& 0.1149 \\
& 0.4132 \\
& 0.7366 \\
& 0.0000
\end{aligned}
$$
\]

\hline
\end{tabular}

[^9]

		Hypertension				Cholesterol (>=240)				HDL (< 40)			
		M EN		WOM EN		M EN		WOM EN		M EN		W OM EN	
Respondent's Edu	at least some primary	-0.0145	-0.0151	-0.00383	0.00274	-0.0112	-0.0158	0.0272	0.0279	0.0263	0.0319	-0.0437*	$-0.0462^{* *}$
		(0.0323)	(0.0330)	(0.0200)	(0.0207)	(0.0171)	(0.0174)	(0.0205)	(0.0206)	(0.0250)	(0.0253)	(0.0227)	(0.0233)
	completed primary	0.00594	0.00137	0.0117	0.0249	0.0149	0.00911	0.0492**	0.0449*	-0.0378	-0.0359	-0.0419*	-0.0344
		(0.0328)	(0.0347)	(0.0258)	(0.0274)	(0.0171)	(0.0179)	(0.0225)	(0.0232)	(0.0285)	(0.0296)	(0.0251)	(0.0262)
	completed Jr. H school	0.0496	0.0371	-0.0241	-0.00426	0.0632**	0.0540*	0.0801**	0.0732*	-0.00332	-0.00369	-0.0612*	-0.0403
		(0.0404)	(0.0428)	(0.0381)	(0.0400)	(0.0276)	(0.0285)	(0.0367)	(0.0377)	(0.0390)	(0.0401)	(0.0361)	(0.0375)
	completed high school	0.0596	0.0509	-0.0187	0.00307	0.0539**	0.0443*	0.116***	0.111***	-0.0613*	$-0.0754 * *$	-0.0768**	-0.0529
		(0.0380)	(0.0421)	(0.0367)	(0.0385)	(0.0219)	(0.0234)	(0.0326)	(0.0364)	(0.0342)	(0.0375)	(0.0350)	(0.0391)
Respondent's height	0 - median	0.000327	0.000193	-0.00125*	-0.00117	0.000667*	0.000567	-0.000987	-0.000957	0.000796	0.000981	0.00163**	0.00168**
		(0.00113)	(0.00111)	(0.000744)	(0.000764)	(0.000379)	(0.000401)	(0.000811)	(0.000809)	(0.00112)	(0.00113)	(0.000753)	(0.000781)
	$>=$ median	-0.00337	-0.00344	0.00350	0.00338	0.00114	0.00123	0.00273	0.00254	0.00430	0.00387	0.000243	-0.0000631
		(0.00301)	(0.00302)	(0.00250)	(0.00248)	(0.00184)	(0.00188)	(0.00243)	(0.00244)	(0.00277)	(0.00279)	(0.00274)	(0.00280)
Respondent's age	60-65	0.0815***	0.0722**	0.0892***	0.0769***	-0.0274*	-0.0269*	0.0227	0.0225	-0.0242	-0.0260	-0.0584**	-0.0477**
		(0.0289)	(0.0290)	(0.0248)	(0.0254)	(0.0159)	(0.0160)	(0.0210)	(0.0214)	(0.0257)	(0.0263)	(0.0230)	(0.0238)
	65-70	0.127***	0.110***	0.149***	0.135***	-0.0450***	-0.0442***	0.000441	-0.000515	-0.0457*	-0.0460*	0.0152	0.0239
		(0.0279)	(0.0297)	(0.0242)	(0.0252)	(0.0151)	(0.0166)	(0.0213)	(0.0219)	(0.0257)	(0.0268)	(0.0253)	(0.0264)
	70-75	0.190***	0.168***	0.234***	0.218***	-0.00292	0.00105	-0.00251	-0.0000991	-0.0798**	$-0.0896 * * *$	-0.0285	-0.0176
		(0.0319)	(0.0331)	(0.0292)	(0.0309)	(0.0205)	(0.0214)	(0.0247)	(0.0258)	(0.0313)	(0.0321)	(0.0276)	(0.0289)
	75-80	0.207***	0.188***	0.214***	0.191***	-0.0306	-0.0281	0.00521	0.00374	-0.0168	-0.0210	-0.0707**	-0.0574
		(0.0405)	(0.0411)	(0.0309)	(0.0325)	(0.0246)	(0.0250)	(0.0304)	(0.0307)	(0.0420)	(0.0429)	(0.0357)	(0.0371)
	80-	0.225***	0.200***	0.289***	0.265***	-0.0564**	-0.0509**	0.00219	0.00683	0.000617	-0.0102	-0.0499	-0.0340
		(0.0407)	(0.0415)	(0.0298)	(0.0319)	(0.0226)	(0.0240)	(0.0329)	(0.0336)	(0.0428)	(0.0427)	(0.0363)	(0.0371)
Death	Father		0.0264		0.0175		0.00471		0.0227		-0.00435		-0.0337
			(0.0415)		(0.0377)		(0.0254)		(0.0334)		(0.0378)		(0.0363)
	Mother		0.0579**		0.0524**		-0.00134		-0.00856		0.0366		-0.0292
			(0.0274)		(0.0248)		(0.0179)		(0.0213)		(0.0254)		(0.0244)
GHS	Father		0.0208		-0.00436		0.0172		-0.0174		0.00595		-0.0220
			(0.0249)		(0.0235)		(0.0160)		(0.0196)		(0.0244)		(0.0225)
	Mother		-0.0127		0.0105		0.00517		0.00762		-0.0548**		0.0234
							(0.0147)		(0.0203)		(0.0227)		(0.0216)
ADL	Father		-0.00540		0.00732		0.00454		0.0103		-0.00316		0.0631**
			(0.0288)		(0.0231)		(0.0186)		(0.0213)		(0.0306)		(0.0254)
	Mother		-0.00190		-0.00465		-0.00568		-0.0109		0.0185		$-0.0640^{* * *}$
					(0.0239)		(0.0171)		(0.0222)		(0.0299)		(0.0240)

Father's Education	at least some primary completed primary completed Jr. H school		$\begin{gathered} -0.0571 \\ (0.0386) \\ 0.0211 \\ (0.0315) \\ 0.0252 \\ (0.0504) \end{gathered}$		$\begin{aligned} & 0.00168 \\ & (0.0382) \\ & -0.0282 \\ & (0.0272) \\ & -0.0230 \\ & (0.0522) \end{aligned}$		-0.0227 (0.0227) 0.0191 (0.0194) 0.0111 (0.0328)		-0.0299 (0.0320) $\mathbf{0 . 0 5 5 4 * *}$ (0.0238) 0.0158 (0.0423)		$\begin{gathered} 0.0286 \\ (0.0362) \\ -0.0208 \\ (0.0282) \\ 0.0398 \\ (0.0501) \end{gathered}$		$\begin{aligned} & 0.00434 \\ & (0.0397) \\ & -0.0452^{*} \\ & (0.0265) \\ & -0.0170 \\ & (0.0511) \end{aligned}$
Mother's Education	at least some primary completed primary completed Jr. H school		$\begin{gathered} -0.0550 \\ (0.0422) \\ 0.0235 \\ (0.0323) \\ 0.0693 \\ (0.0678) \end{gathered}$		$\begin{gathered} 0.0360 \\ (0.0410) \\ -0.00407 \\ (0.0325) \\ 0.00709 \\ (0.0662) \end{gathered}$		$\begin{gathered} 0.0441 \\ (0.0274) \\ 0.00160 \\ (0.0206) \\ -0.00484 \\ (0.0534) \end{gathered}$		$\begin{gathered} -0.0835^{* * *} \\ (0.0294) \\ -0.0524^{*} \\ (0.0290) \\ 0.0335 \\ (0.0644) \end{gathered}$		$\begin{gathered} -0.0205 \\ (0.0435) \\ 0.0361 \\ (0.0314) \\ 0.110 \\ (0.0682) \end{gathered}$		$\begin{gathered} 0.0686 \\ (0.0436) \\ -0.00321 \\ (0.0304) \\ -0.0682 \\ (0.0709) \end{gathered}$
Constant		$\begin{gathered} \mathbf{0 . 5 6 4 * * *} \\ (0.198) \end{gathered}$	$\begin{gathered} \mathbf{0 . 4 8 7 * *} \\ (0.202) \end{gathered}$	$\begin{gathered} \mathbf{0 . 7 7 4 * * *} \\ (0.131) \end{gathered}$	$\begin{gathered} \mathbf{0 . 7 0 1 * * *} \\ (0.142) \end{gathered}$	$\begin{aligned} & -0.0293 \\ & (0.0774) \end{aligned}$	$\begin{aligned} & -0.0266 \\ & (0.0834) \end{aligned}$	$\begin{gathered} \mathbf{0 . 3 3 9 * *} \\ (0.151) \end{gathered}$	$\begin{gathered} \mathbf{0 . 3 2 2 * *} \\ (0.154) \end{gathered}$	$\begin{gathered} 0.593^{* * *} \\ (0.192) \end{gathered}$	$\begin{gathered} 0.538^{* * *} \\ (0.197) \end{gathered}$	$\begin{aligned} & \text { 0.226* } \\ & (0.130) \end{aligned}$	$\begin{gathered} 0.297^{* *} \\ (0.141) \end{gathered}$
R-squared		0.074	0.084	0.087	0.092	0.100	0.104	0.106	0.116	0.083	0.090	0.103	0.109
Sample size		2985	2985	3493	3493	2957	2957	3457	3457	2931	2931	3445	3445
Birth Place (kabupatan) dummy variables		Yes											
F-test (p -values)													
Age dummy variables		0.0000	0.0000	0.0000	0.0000	0.0156	0.0435	0.9302	0.9402	0.1669	0.1301	0.0330	0.1032
Height variables		0.4993	0.4662	0.1989	0.2415	0.0827	0.1534	0.4055	0.4384	0.0478	0.0553	0.0471	0.0533
Education dummy variables		0.1008	0.2859	0.8641	0.8748	0.0033	0.0160	0.0044	0.0291	0.0145	0.0058	0.1352	0.3499
Parent's death dummy variables			0.0655		0.0776		0.9824		0.7417		0.3538		0.2461
Parent's education dummy variables			0.0138		0.8228		0.5258		0.0016		0.2056		0.1938
Parent's GHS dummy variables			0.7042		0.8980		0.3365		0.6719		0.0329		0.4861
Parent's ADL dummy variables			0.9584		0.9506		0.9447		0.8568		0.7813		0.0140
Parent's health dummy variables			0.3973		0.3772		0.8401		0.9702		0.2911		0.1069
Parent's health + education dummy variables			0.0152		0.6863		0.7399		0.0188		0.2069		0.0757
Birth Place dummy variables (kabupatan level)		0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000

[^10]

Table 5_d. Health-SES Gradients of Older Adults

Cognition
Depression

		M EN		WOM EN		M EN		WOM EN	
Respondent's Edu	at least some primary completed primary completed junior high school completed high school	0.131 (0.127) $\mathbf{0 . 7 1 0 ^ { * * * }}$ (0.135) $1.032^{* * *}$ (0.152) $1.471^{* * *}$ (0.138)	0.0980 (0.130) $\mathbf{0 . 6 7 4 * * *}$ (0.138) $0.977^{* * *}$ (0.156) $1.383^{* *}$ (0.146)	$\begin{gathered} \hline \mathbf{0 . 4 3 0 * * *} \\ (0.0892) \\ \mathbf{0 . 9 4 5} * * * \\ (0.0949) \\ \mathbf{1 . 3 1 0}{ }^{* * *} \\ (0.132) \\ 2.023^{* * *} \\ (0.116) \\ \hline \end{gathered}$	$\begin{gathered} \hline \mathbf{0 . 3 6 6} * * * \\ (0.0887) \\ 0.830^{* * *} \\ (0.0967) \\ 1.138^{* * *} \\ (0.138) \\ 1.751^{* * *} \\ (0.130) \\ \hline \end{gathered}$	-0.392^{*} (0.203) $-0.694^{* * *}$ (0.196) $-0.743^{* * *}$ (0.273) $-1.570^{* * *}$ (0.211)	-0.328 (0.203) $-0.536^{* * *}$ (0.198) $-0.570^{* *}$ (0.279) $-1.344^{* * *}$ (0.224)	-0.250 (0.166) $-0.826^{* * *}$ (0.188) $-1.322^{* * *}$ (0.257) $-1.802^{* * *}$ (0.250)	-0.144 (0.170) $-0.660^{* * *}$ (0.198) $-1.085^{* * *}$ (0.279) $-1.390^{* * *}$ (0.287)
Respondent's height	0 - median $>=$ median	$\begin{gathered} \hline-0.000844 \\ (0.00350) \\ 0.0123 \\ (0.0101) \end{gathered}$	$\begin{gathered} \hline-0.00105 \\ (0.00357) \\ 0.0122 \\ (0.0102) \end{gathered}$	$\begin{aligned} & \hline-0.000669 \\ & (0.00324) \\ & -0.00835 \\ & (0.00933) \end{aligned}$	$\begin{gathered} \hline-0.000136 \\ (0.00319) \\ -0.00912 \\ (0.00942) \end{gathered}$	$\begin{gathered} \hline 0.00575 \\ (0.00593) \\ -0.00919 \\ (0.0213) \end{gathered}$	$\begin{gathered} \hline 0.00392 \\ (0.00596) \\ -0.00653 \\ (0.0206) \end{gathered}$	$\begin{gathered} \hline-0.000850 \\ (0.00630) \\ 0.0175 \\ (0.0189) \end{gathered}$	$\begin{gathered} \hline-0.000534 \\ (0.00651) \\ 0.0196 \\ (0.0189) \end{gathered}$
Respondent's age	$\begin{aligned} & 60-65 \\ & 65-70 \\ & 70-75 \\ & 75-80 \\ & 80- \end{aligned}$	$\begin{gathered} \hline-0.370^{* * *} \\ (0.0907) \\ -0.616^{* *} \\ (0.0854) \\ -0.768^{* * *} \\ (0.117) \\ -1.044^{* * *} \\ (0.145) \\ -1.274^{* *} \\ (0.156) \\ \hline \end{gathered}$	$\begin{gathered} \hline-0.342^{* * *} \\ (0.0917) \\ -0.558^{* * *} \\ (0.0889) \\ -0.709 * * * \\ (0.118) \\ -0.960^{* * *} \\ (0.147) \\ -1.232 * * \\ (0.159) \end{gathered}$	$\begin{gathered} \hline-0.319^{* * *} \\ (0.0877) \\ -0.508^{* * *} \\ (0.0831) \\ -0.563^{* * *} \\ (0.123) \\ -0.815^{* * *} \\ (0.155) \\ -1.045 * * * \\ (0.215) \\ \hline \end{gathered}$	$\begin{gathered} \hline-\mathbf{0 . 2 8 1 * * *} \\ (0.0888) \\ -0.466^{* * *} \\ (0.0872) \\ -0.507^{* * *} \\ (0.125) \\ -0.748^{* * *} \\ (0.157) \\ -1.012^{* * *} \\ (0.219) \end{gathered}$	-0.134 (0.152) $\mathbf{0 . 4 4 2 * *}$ (0.181) $\mathbf{0 . 4 7 5 * *}$ (0.209) $\mathbf{0 . 8 4 0 * * *}$ (0.309) $\mathbf{1 . 3 9 0 * *}$ (0.369)	-0.185 (0.152) $\mathbf{0 . 3 2 7}{ }^{*}$ (0.182) 0.315 (0.206) $\mathbf{0 . 7 4 1 * *}$ (0.302) $\mathbf{1 . 3 0 1}$ (0.367)	-0.165 (0.158) 0.167 (0.190) 0.228 (0.225) $\mathbf{0 . 4 9 6 *}$ (0.280) $\mathbf{1 . 2 7 3 * * *}$ (0.340)	-0.282^{*} (0.163) 0.0586 (0.193) 0.0757 (0.232) 0.342 (0.288) $1.105 * * *$ (0.343)
Death	Father Mother		$\begin{gathered} -0.100 \\ (0.126) \\ -0.112 \\ (0.0796) \end{gathered}$		$\begin{gathered} \hline-\mathbf{0 . 2 6 9 * *} \\ (0.132) \\ -0.0377 \\ (0.0798) \\ \hline \end{gathered}$		$\begin{gathered} -0.0338 \\ (0.275) \\ 0.112 \\ (0.175) \end{gathered}$		$\begin{gathered} 0.261 \\ (0.299) \\ 0.266 \\ (0.195) \end{gathered}$
GHS	Father Mother		$\begin{aligned} & -0.00202 \\ & (0.0793) \\ & -0.0713 \\ & (0.0784) \end{aligned}$		$\begin{aligned} & \hline-0.0250 \\ & (0.0766) \\ & -0.0335 \\ & (0.0744) \end{aligned}$		$\begin{aligned} & \hline \mathbf{0 . 2 7 5 *} \\ & (0.151) \\ & \mathbf{0 . 2 9 5 * *} \\ & (0.148) \end{aligned}$		0.101 (0.160) $\mathbf{0 . 5 3 5 * * *}$ (0.171)
ADL	Father Mother		$\begin{gathered} \hline-0.0658 \\ (0.0914) \\ -0.0244 \\ (0.0885) \end{gathered}$		$\begin{gathered} \hline 0.0263 \\ (0.0899) \\ 0.128 \\ (0.0781) \end{gathered}$		$\begin{gathered} \hline 0.0854 \\ (0.197) \\ 0.250 \\ (0.182) \end{gathered}$		$\begin{gathered} \hline 0.287 \\ (0.199) \\ -0.227 \\ (0.183) \end{gathered}$

Father's Education at least some primary completed primary completed junior high school		$\begin{gathered} \hline \mathbf{0 . 3 5 6 * * *} \\ (0.136) \\ -0.0647 \\ (0.0922) \\ 0.0777 \\ (0.157) \end{gathered}$		0.205 (0.128) $\mathbf{0 . 2 8 4 * * *}$ (0.0911) $\mathbf{0 . 6 0 9 * * *}$ (0.174)		$\begin{gathered} \hline 0.0416 \\ (0.244) \\ -0.302^{*} \\ (0.165) \\ 0.397 \\ (0.312) \end{gathered}$		-0.269 (0.269) -0.229 (0.194) -0.538 (0.351)
Mother's Education at least some primary completed primary completed junior high school		$\begin{aligned} & \hline-0.192 \\ & (0.139) \\ & \mathbf{0 . 1 8 2 *} \\ & (0.103) \\ & -0.0341 \\ & (0.218) \end{aligned}$		$\begin{gathered} \hline 0.0266 \\ (0.136) \\ -0.0666 \\ (0.0962) \\ -0.154 \\ (0.210) \end{gathered}$		$\begin{gathered} \hline-\mathbf{0 . 5 3 3} * \\ (0.278) \\ -0.204 \\ (0.177) \\ -0.0784 \\ (0.435) \end{gathered}$		$\begin{gathered} 0.137 \\ (0.333) \\ -0.0878 \\ (0.222) \\ 0.132 \\ (0.504) \end{gathered}$
Constant	$\begin{gathered} \hline 3.892 * * * \\ (0.580) \end{gathered}$	$\begin{gathered} \hline \text { 4.179*** } \\ (0.618) \end{gathered}$	$\begin{gathered} \text { 3.570*** } \\ (0.513) \end{gathered}$	$\begin{gathered} \hline 3.669 * * * \\ (0.531) \end{gathered}$	$\begin{gathered} \hline 3.774 * * * \\ (1.004) \end{gathered}$	$\begin{gathered} \hline 3.306 * * * \\ (1.042) \end{gathered}$	$\begin{gathered} \hline 4.402 * * * \\ (1.095) \end{gathered}$	$\begin{gathered} \hline 3.521^{* * *} \\ (1.167) \end{gathered}$
R-squared	0.265	0.276	0.309	0.322	0.101	0.122	0.103	0.116
Sample size	2317	2317	2309	2309	2830	2830	3222	3222
Birth Place (kabupatan) dummy variables	Yes							
F-test (p-values)								
Age dummy variables Height variables Education dummy variables Parent's death dummy variables Parent's education dummy variables Parent's GHS dummy variables Parent's ADL dummy variables Parent's health (death, GHS, ADL) dummy variables Parent's health + education dummy variables Birth Place dummy variables (kabupatan level)	$\begin{aligned} & 0.0000 \\ & 0.4222 \\ & 0.0000 \\ & \\ & \\ & \\ & \\ & \hline .0000 \end{aligned}$	$\begin{aligned} & \hline 0.0000 \\ & 0.4437 \\ & 0.0000 \\ & 0.1576 \\ & 0.0478 \\ & 0.5790 \\ & 0.6073 \\ & 0.1857 \\ & 0.0181 \\ & 0.0000 \end{aligned}$	$\begin{aligned} & 0.0000 \\ & 0.5283 \\ & 0.0000 \\ & \\ & \\ & \\ & 0.0000 \end{aligned}$	$\begin{aligned} & 0.0000 \\ & 0.5420 \\ & 0.0000 \\ & 0.0957 \\ & 0.0031 \\ & 0.7681 \\ & 0.1200 \\ & 0.1487 \\ & 0.0028 \\ & 0.0000 \end{aligned}$	$\begin{aligned} & 0.0001 \\ & 0.6249 \\ & 0.0000 \\ & \\ & \\ & \\ & 0.0000 \end{aligned}$	$\begin{aligned} & 0.0006 \\ & 0.8055 \\ & 0.0000 \\ & 0.8147 \\ & 0.0150 \\ & 0.0007 \\ & 0.1570 \\ & 0.0001 \\ & 0.0000 \\ & 0.0000 \end{aligned}$	$\begin{aligned} & 0.0006 \\ & 0.6192 \\ & 0.0000 \\ & \\ & \\ & \\ & 0.0000 \end{aligned}$	$\begin{aligned} & 0.0014 \\ & 0.5258 \\ & 0.0000 \\ & 0.2003 \\ & 0.6035 \\ & 0.0006 \\ & 0.2933 \\ & 0.0003 \\ & 0.0017 \\ & 0.0000 \end{aligned}$

Source: IFLS4 Note: Standard errors in parenthesis. (clustered at community level) $* * *$ significant at $1 \%, * *$ significant at $5 \%, *$ significant at 10%.
Note: Standard errors in parenthesis. (clustered at community level) $* * *$ significant at $1 \%, * *$ significant at $5 \%, *$ significant at 10%.
Dummy variables capturing missing observations are included in the regression for each of the following variables: father/mother's education, father/mother's GHS and father/mother's ADL but not reported in the table.
MEN WOMEN

Variables	Description	Obs	Mean	SD.	Min	Max	Obs	Mean	SD.	Min	Max
Poor GHS	Somewhat unhealthy or very unhealthy = 1	3081	0.23	0.42	0	1	3608	0.29	0.45	0	1
\# of ADLs difficulties	The sum of the number of difficulties of ADLs	3080	1.04	1.89	0	9	3605	1.79	2.17	0	9
\# of IADLs difficulties	The sum of the number of difficulties of IADLs	3081	0.55	1.19	0	5	3605	1.01	1.32	0	5
BMI	Underweight: < 18.5	2974	0.20	0.40	0	1	3482	0.20	0.40	0	1
	Overweight: >= 25	2974	0.17	0.38	0	1	3482	0.30	0.46	0	1
Hemoglobin	Men: less than 13, Women: less than 12	2979	0.30	0.46	0	1	3474	0.35	0.48	0	1
Hypertension	Systolic $>=140$ or diastolic $>=90$ or doctor diagnosis	2985	0.52	0.50	0	1	3493	0.63	0.48	0	1
Cholesterol	Total cholesterol >= 240	2957	0.11	0.31	0	1	3457	0.23	0.42	0	1
HDL	HDL < 40	2931	0.65	0.48	0	1	3445	0.39	0.49	0	1
Cognition	The mean of correctly immediate and delayed recalled words	2317	3.56	1.58	0	9	2309	3.22	1.57	0	10
Depression	Short CES-D score	2830	3.90	3.17	0	26	3222	4.56	3.59	0	27
Father's death	Being dead in 2007	3081	0.94	0.23	0	1	3608	0.95	0.23	0	1
Mother's death	Being dead in 2007	3081	0.81	0.39	0	1	3608	0.84	0.37	0	1
Father's poor GHS	Somewhat unhealthy or very unhealthy now or before death = 1	3081	0.50	0.50	0	1	3608	0.47	0.50	0	1
Mother's poor GHS	Somewhat unhealthy or very unhealthy now or before death = 1	3081	0.47	0.50	0	1	3608	0.45	0.50	0	1
Father's ADL problem	Need help with basic personal needs now or before death $=1$	3081	0.23	0.42	0	1	3608	0.24	0.42	0	1
Mother's ADL problem	Need help with basic personal needs now or before death = 1	3081	0.25	0.43	0	1	3608	0.26	0.44	0	1
Java dummy variable	Born in Jakarta, Java, Yogyakarta or Bali (developed areas) = 1	3081	0.69	0.46	0	1	3608	0.68	0.47	0	1
Father's education	At least some primary school	3081	0.09	0.29	0	1	3608	0.06	0.24	0	1
	Completed primary school	3081	0.24	0.43	0	1	3608	0.23	0.42	0	1
	Completed junior high school	3081	0.06	0.24	0	1	3608	0.05	0.22	0	1
Mother's education	At least some primary school		0.07	0.25	0	1	3608	0.05	0.23	0	1
	Completed primary school	3081	0.17	0.38	0	1	3608	0.15	0.35	0	1
	Completed junior high school	3081	0.02	0.15	0	1	3608	0.02	0.15	0	1
Respondent's age	50-59	3081	0.49	0.50	0	1	3608	0.46	0.50	0	1
	60-65	3081	0.15	0.36	0	1	3608	0.15	0.36	0	1
	65-70	3081	0.14	0.35	0	1	3608	0.15	0.36	0	1
	70-75	3081	0.10	0.30	0	1	3608	0.10	0.30	0	1
	75-80	3081	0.06	0.23	0	1	3608	0.07	0.25	0	1
	80-	3081	0.06	0.24	0	1	3608	0.06	0.25	0	1
Respondent's height		3081	158.40	9.83	16	189	3608	146.70	10.57	14	198
Respondent's Edu	At least some primary school	3081	0.29	0.45	0	1	3608	0.29	0.46	0	1
	Completed primary school	3081	0.29	0.45	0	1	3608	0.19	0.39	0	1
	Completed junior high school	3081	0.09	0.29	0	1	3608	0.06	0.24	0	1
	Completed senior high school	3081	0.17	0.38	0	1	3608	0.08	0.28	0	1

Source: IFLS4

Table A2. Questions in IFLS

1. General health status (GHS)
Q. In general, how is your health?

Answer. Very healthy --- 1 Somewhat healthy --- 2 Somewhat unhealthy --- 3 Unhealthy --- 4
2. \#of difficulties with ADLs and physical functioning
a) To carry a heavy load (like a pail of water) for 20 meters
b) To sweep the house floor yard
c) To walk for 5 kilometers
d) To draw a pail of water from a well
e) To bow, squat, kneel
f) To dress without help
g) To stand up from sitting position in a chair without help
h) To go to the bathroom without help
i) To stand up from sitting on the floor without help

Answer: 1. Easily 3 . With difficulty 5 . Unable to do it
3. Cognition (the average number of correctly immediate and delayed words)

List A. (Hotel, river, tree, skin, gold, market, paper, child, king, book)
List B. (Sky, ocean, flag, rupiah, wife, machine, house, earth, school, butter)
List C. (M ount, stone, blood, corner, shoes, letter, girl, house, valley, car)
List D. (Water, mosque, doctor, castle, fire, garden, sea, village, baby, table)
4. Parent's death (Non-coresident parents)
Q. Is your father (mother) still alive?

Answer: Yes--- 1 No --- 3
5. Parent's general health status (GHS)
Q. How is the health status of your father (mother) now/ before his (her) death?

Answer: Very healthy --- 1 Somewhat healthy --- 2 Somewhat unhealthy --- 3 Very unhealthy --- 4 Don't know --- 8
6. Parent's ADL problem

Q, Now/before death does/did your father (mother) need help with basic personal needs like dressing, eating, or bathing?
Answer: Yes --- 1 No --- 3 Unwilling to answer --- 7 Don't know --- 8

Table A3. The distribution of Father M other's Death and GHS

1. Father death\GHS

Father

Death\GHS	very healthy	somewhat healthy	somewhat unhealthy	unhealthy	missing	
Alive	$\begin{array}{r} 8 \\ (2.18 \%) \end{array}$	$\begin{array}{r} 251 \\ (68.39 \%) \end{array}$	$\begin{array}{r} 85 \\ (23.16 \%) \end{array}$	$\begin{array}{r} 10 \\ (2.72 \%) \end{array}$	$\begin{array}{r} 13 \\ (3.54 \%) \end{array}$	367
Dead	$\begin{array}{r} 100 \\ (1.58 \%) \end{array}$	$\begin{array}{r} 2395 \\ (37.88 \%) \end{array}$	$\begin{array}{r} 2409 \\ (38.11 \%) \end{array}$	$\begin{array}{r} 733 \\ (11.59 \%) \end{array}$	$\begin{array}{r} 685 \\ (10.84 \%) \end{array}$	6322
Total	$\begin{array}{r} 108 \\ (1.61 \%) \end{array}$	$\begin{array}{r} 2646 \\ (39.56 \%) \end{array}$	$\begin{array}{r} 2494 \\ (37.29 \%) \end{array}$	$\begin{array}{r} 743 \\ (11.11 \%) \end{array}$	$\begin{array}{r} 698 \\ (10.44 \%) \end{array}$	6689

Source: IFLS4
2. M other death \GHS

Mother

Death\GHS	very healthy	somewhat healthy	somewhat unhealthy	unhealthy	missing	
Alive	$\begin{array}{r} 25 \\ (2.15 \%) \end{array}$	$\begin{array}{r} 835 \\ (71.74 \%) \end{array}$	$\begin{array}{r} 237 \\ (20.36 \%) \end{array}$	$\begin{array}{r} 43 \\ (3.69 \%) \end{array}$	$\begin{array}{r} 24 \\ (2.06 \%) \end{array}$	1164
Dead	$\begin{array}{r} 63 \\ (1.14 \%) \end{array}$	$\begin{array}{r} 2172 \\ (39.31 \%) \end{array}$	$\begin{array}{r} 2133 \\ (38.60 \%) \end{array}$	$\begin{array}{r} 640 \\ (11.58 \%) \end{array}$	$\begin{array}{r} 517 \\ (9.36 \%) \end{array}$	5525
Total	$\begin{array}{r} 88 \\ (1.32 \%) \end{array}$	$\begin{array}{r} 3007 \\ (44.95 \%) \end{array}$	$\begin{array}{r} 2370 \\ (35.43 \%) \end{array}$	$\begin{array}{r} 683 \\ (10.21 \%) \end{array}$	$\begin{array}{r} 541 \\ (8.09 \%) \end{array}$	6689

[^11]
[^0]: ${ }^{1}$ For co-resident parents, if they died in 1996, the health information from IFLS2(1997) is used and if died before 1993, IFLS 1(1993) is used. However, for non-coresident parents, their information comes from IFLS4(2007) because their adult children are asked about biological parents' health status now or before death.
 ${ }^{2}$ The F-statistic for equality of the three father death coefficients jointly with the separate equality of the three mother death coefficients in the poor general health regressions are 1.26 (p-value: 0.28) for women and 0.24 (pvalue 0.91) for men. Results for other equations are similar.

[^1]: ${ }^{3}$ The F-statistic for the interactions of mother and father deaths with the mother or father having poor general health in the male poor general health regression is 0.72 (p -value, 0.49). Again, results are similar for other equations.

[^2]: ${ }^{4}$ Previous studies such as Thomas et al. (2008) show that the one's work capacity becomes lower if hemoglobin levels are below these thresholds.
 ${ }^{5}$ This is substantially lower than in 2000 and 1997, see Witoelar, Strauss and Sikoki (forthcoming).
 ${ }^{6}$ Low levels of HDL are also an issue among the elderly in China (see Crimmins et al., 2011).

[^3]: ${ }^{7}$ We first constructed place of birth at the sub-district level, but there were many cells with only one or a handful of observations, so we chose district as our level of aggregation instead. We have 99 of them.
 ${ }^{8}$ Constructing these dummy variables required examining data from the migration section (MG), as well as the control and demographic roster section (K). The migration section obtains data on sub-district and district of birth, where one lived at age 12 and all long-distance moves since age 12. From that section one can know if the respondent still lives in the place of birth. A difficulty is involved because many districts were divided over time and had their names changed. Since the district of birth information comes from different waves of IFLS for different respondents, we had to convert all district codes and names into a single year equivalent (we chose 1999) to obtain a consistent set. We had crosswalks available from the Indonesian BPS which we used, plus province maps showing all districts. We not only matched numeric codes, but names as well. Sometimes the name had a new number code, which we chose. After deriving a consistent list of districts and codes we found that still, some had only one or a very few number of observations, forcing us to aggregate further. We did so using the district maps to group contiguous districts. We also checked to make sure for the binary dependent variables that none of the districts had all 0 s or all 1 s . This would cause a problem because the district dummies would then perfectly predict the outcomes. We found some did and so further aggregated, again using our maps.

[^4]: ${ }^{9}$ Standard errors are presented in parentheses and they are adjusted for clustering at the local community (desa or kelurahan) lived in in 2007, and are also robust to arbitrary forms of heteroskedasticity.

[^5]: ${ }^{10}$ This is not to say that there is no influence of parental health. Had we been able to measure cholesterol for parents before they died, for instance, that might well have been correlated with the measurement of the respondent children.

[^6]: ${ }^{11}$ Standard errors are clustered at the 1993 (or 1997) community (desa or kelurahan) of residence.

[^7]: ${ }^{12}$ Birthweight is available for part of the sample, but those for whom it is not available are not a random sub-sample; they are people who were born at home perhaps using midwives, but who did not weight the babies at birth.

[^8]: ${ }^{13}$ See Witoelar, Strauss and Sikoki (forthcoming) for a more detailed analysis of the health-respondent SES correlations in IFLS.

[^9]: Note: Standard errors in parenthesis. (clustered at community level) *** significant at $1 \%, * *$ significant at 5%, * significant at 10%

[^10]: Note: Standard errors in parenthesis. (clustered at community level) $* * *$ significant at $1 \%, * *$ significant at 5%, significant at 10%

[^11]: Source: IFLS4

